The present work demonstrates how a light structure can be easily designed through Topology Optimization even including complex analysis and sizing criteria such as hyperelastic Neo-Hookean materials for nonlinear analysis and aggregated stress constraints. The SIMP approach was adopted and two different strategies were analysed using an in house versatile MATLAB code. MMA was used as reference optimizer (in structural optimization) whereas a unified aggregation and relaxation method was adopted to deal with stress constraints. Feasibility was analyzed from the viewpoint of allowable stress verification. Two test cases are then studied: a morphing airfoil (for aeronautical applications) and a geometric inverter (for mechanics and bio-medical applications). For both, a hyperelastic Neo-Hookean material was chosen. Finally a complementary study on the effects of constraints and the input force intensity is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.