Fine-needle aspiration biopsies (FNA) represent the gold standard to exclude the malignant nature of thyroid nodules. After cytomorphology, 20–30% of cases are deemed “indeterminate for malignancy” and undergo surgery. However, after thyroidectomy, 70–80% of these nodules are benign. The identification of tools for improving FNA’s diagnostic performances is explored by matrix-assisted laser-desorption ionization mass spectrometry imaging (MALDI-MSI). A clinical study was conducted in order to build a classification model for the characterization of thyroid nodules on a large cohort of 240 samples, showing that MALDI-MSI can be effective in separating areas with benign/malignant cells. The model had optimal performances in the internal validation set (n = 70), with 100.0% (95% CI = 83.2–100.0%) sensitivity and 96.0% (95% CI = 86.3–99.5%) specificity. The external validation (n = 170) showed a specificity of 82.9% (95% CI = 74.3–89.5%) and a sensitivity of 43.1% (95% CI = 30.9–56.0%). The performance of the model was hampered in the presence of poor and/or noisy spectra. Consequently, restricting the evaluation to the subset of FNAs with adequate cellularity, sensitivity improved up to 76.5% (95% CI = 58.8–89.3). Results also suggest the putative role of MALDI-MSI in routine clinical triage, with a three levels diagnostic classification that accounts for an indeterminate gray zone of nodules requiring a strict follow-up.
Incidental thyroid carcinomas (ITCs) are a fairly frequent finding in daily routine practice, with papillary thyroid microcarcinoma being the most frequent entity. In our work, we isolated incidental cases arising in thyroids removed for other cytologically indeterminate and histologically benign nodules. We retrospectively retrieved cases with available thyroid Fine Needle Aspiration (FNA, 3270 cases), selecting those with an indeterminate cytological diagnosis (Bethesda classes III–IV, 652 cases). Subsequently, we restricted the analysis to surgically treated patients (163 cases) finding an incidental thyroid carcinoma in 22 of them. We found a 13.5% ITC rate, with ITCs representing 46.8% of all cancer histologically diagnosed in this indeterminate setting. Patients received a cytological diagnosis of Bethesda class III and IV in 41% and 59% of cases, respectively. All ITC cases turned out to be papillary thyroid microcarcinomas; 36% of cases were multifocal, with foci bilaterally detected in 50% of cases. We found an overall ITC rate concordant with the literature and with our previous findings. The assignment of an indeterminate category to FNA did not increase the risk of ITCs in our cohort. Rather, a strong statistical significance (p < 0.01) was found comparing the larger size of nodules that underwent FNA and the smaller size of their corresponding ITC nodule.
Noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) are low-risk thyroid lesions most often characterised by RAS-type mutations. The histological diagnosis may be challenging, and even immunohistochemistry and molecular approaches have not yet provided conclusive solutions. This study characterises a set of NIFTPs by Matrix-Assisted Laser Desorption/Ionisation (MALDI)–Mass Spectrometry Imaging (MSI) to highlight the proteomic signatures capable of overcoming histological challenges. Archived formalin-fixed paraffin-embedded samples from 10 NIFTPs (n = 6 RAS-mutated and n = 4 RAS-wild type) were trypsin-digested and analysed by MALDI–MSI, comparing their profiles to normal tissue and synchronous benign nodules. This allowed the definition of a four-peptide signature able to distinguish RAS-mutant from wild-type cases, the latter showing proteomic similarities to hyperplastic nodules. Moreover, among the differentially expressed signals, Peptidylprolyl Isomerase A (PPIA, 1505.8 m/z), which has already demonstrated a role in the development of cancer, was found overexpressed in NIFTP RAS-mutated nodules compared to wild-type lesions. These results underlined that high-throughput proteomic approaches may add a further level of biological comprehension for NIFTPs. In the future, thanks to the powerful single-cell detail achieved by new instruments, the complementary NGS–MALDI imaging sequence might be the correct methodological approach to confirm that the current NIFTP definition encompasses heterogeneous lesions that must be further characterised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.