We analysed the roles and distribution of metal ions in enzymatic catalysis using available public databases and our new resource Metal-MACiE (http://www.ebi.ac.uk/thornton-srv/databases/Metal_MACiE/home.html). In Metal-MACiE, a database of metal-based reaction mechanisms, 116 entries covering 21% of the metal-dependent enzymes and 70% of the types of enzyme-catalysed chemical transformations are annotated according to metal function. We used Metal-MACiE to assess the functions performed by metals in biological catalysis and the relative frequencies of different metals in different roles, which can be related to their individual chemical properties and availability in the environment. The overall picture emerging from the overview of Metal-MACiE is that redox-inert metal ions are used in enzymes to stabilize negative charges and to activate substrates by virtue of their Lewis acid properties, whereas redox-active metal ions can be used both as Lewis acids and as redox centres. Magnesium and zinc are by far the most common ions of the first type, while calcium is relatively less used. Magnesium, however, is most often bound to phosphate groups of substrates and interacts with the enzyme only transiently, whereas the other metals are stably bound to the enzyme. The most common metal of the second type is iron, which is prevalent in the catalysis of redox reactions, followed by manganese, cobalt, molybdenum, copper and nickel. The control of the reactivity of redox-active metal ions may involve their association with organic cofactors to form stable units. This occurs sometimes for iron and nickel, and quite often for cobalt and molybdenum.
Conflicting roles for protein kinase C (PKC) isozymes in cardiac disease have been reported. Here, ␦PKC-selective activator and inhibitor peptides were designed rationally, based on molecular modeling and structural homology analyses. Together with previously identified activator and inhibitor peptides of PKC, ␦PKC peptides were used to identify cardiac functions of these isozymes. In isolated cardiomyocytes, perfused hearts, and transgenic mice, ␦PKC and PKC had opposing actions on protection from ischemiainduced damage. Specifically, activation of PKC caused cardioprotection whereas activation of ␦PKC increased damage induced by ischemia in vitro and in vivo. In contrast, ␦PKC and PKC caused identical nonpathological cardiac hypertrophy; activation of either isozyme caused nonpathological hypertrophy of the heart. These results demonstrate that two related PKC isozymes have both parallel and opposing effects in the heart, indicating the danger in the use of therapeutics with nonselective isozyme inhibitors and activators. Moreover, reduction in cardiac damage caused by ischemia by perfusion of selective regulator peptides of PKC through the coronary arteries constitutes a major step toward developing a therapeutic agent for acute cardiac ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.