Recognition of activities of daily living (ADLs) is an enabling technology for several ubiquitous computing applications. In this field, most activity recognition systems rely on supervised learning methods to extract activity models from labeled datasets. An inherent problem of that approach consists in the acquisition of comprehensive activity datasets, which is expensive and may violate individuals' privacy. The problem is particularly challenging when focusing on complex ADLs, which are characterized by large intra- and inter-personal variability of execution. In this paper, we propose an unsupervised method to recognize complex ADLs exploiting the semantics of activities, context data, and sensing devices. Through ontological reasoning, we derive semantic correlations among activities and sensor events. By matching observed sensor events with semantic correlations, a statistical reasoner formulates initial hypotheses about the occurred activities. Those hypotheses are refined through probabilistic reasoning, exploiting semantic constraints derived from the ontology. Extensive experiments with real-world datasets show that the accuracy of our unsupervised method is comparable to the one of state of the art supervised approaches
We have fully implemented the system and evaluated it using real datasets, partly generated by performing activities in a smart home laboratory, and partly acquired during several months of monitoring of the instrumented home of a senior diagnosed with MCI. Experimental results, including comparisons with other activity recognition techniques, show the effectiveness of SmartFABER in terms of recognition rates.
Abstract-According to the World Health Organization, the rate of people aged 60 or more is growing faster than any other age group in almost every country, and this trend is not going to change in a near future. Since senior citizens are at high risk of non communicable diseases requiring long-term care, this trend will challenge the sustainability of the entire health system. Pervasive computing can provide innovative methods and tools for early detecting the onset of health issues. In this paper we propose a novel method relying on medical models, provided by cognitive neuroscience researchers, describing abnormal activity routines that may indicate the onset of early symptoms of mild cognitive impairment. A non-intrusive sensor-based infrastructure acquires low-level data about the interaction of the individual with home appliances and furniture, as well as data from environmental sensors. Based on those data, a novel hybrid statistical-symbolical technique is used to detect first the activities being performed and then the abnormal aspects in carrying out those activities, which are communicated to the medical center. Differently from related works, our method can detect abnormal behaviors at a fine-grained level, thus providing an important tool to support the medical diagnosis. In order to evaluate our method we have developed a prototype of the system and acquired a large dataset of abnormal behaviors carried out in an instrumented smart home. Experimental results show that our technique has a high precision while generating a small number of false positives.
One of the major open problems in sensor-based Human Activity Recognition (HAR) is the scarcity of labeled data. Among the many solutions to address this challenge, semi-supervised learning approaches represent a promising direction. However, their centralized architecture incurs in the scalability and privacy problems that arise when the process involves a large number of users. Federated learning (FL) is a promising paradigm to address these problems. However, the FL methods that have been proposed for HAR assume that the participating users can always obtain labels to train their local models (i.e., they assume a fully supervised setting). In this work, we propose FedAR: a novel hybrid method for HAR that combines semi-supervised and federated learning to take advantage of the strengths of both approaches. FedAR combines active learning and label propagation to semi-automatically annotate the local streams of unlabeled sensor data, and it relies on FL to build a global activity model in a scalable and privacy-aware fashion. FedAR also includes a transfer learning strategy to fine-tune the global model on each user. We evaluated our method on two public datasets, showing that FedAR reaches recognition rates and personalization capabilities similar to state-of-the-art FL supervised approaches. As a major advantage, FedAR only requires a very limited number of annotated data to populate a pre-trained model and a small number of active learning questions that quickly decrease while using the system, leading to an effective and scalable solution for the data scarcity problem of HAR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.