In recent years, multi-factor strategies have gained increasing popularity in the financial industry, as they allow investors to have a better understanding of the risk drivers underlying their portfolios. Moreover, such strategies promise to promote diversification and thus limit losses in times of financial turmoil. However, recent studies have reported a significant level of redundancy between these factors, which might enhance risk contagion among multi-factor portfolios during financial crises. Therefore, it is of fundamental importance to better understand the relationships among factors.Empowered by recent advances in causal structure learning methods, this paper presents a study of the causal structure of financial risk factors and its evolution over time. In particular, the data we analyze covers 11 risk factors concerning the US equity market, spanning a period of 29 years at daily frequency.Our results show a statistically significant sparsifying trend of the underlying causal structure. However, this trend breaks down during periods of financial stress, in which we can observe a densification of the causal network driven by a growth of the out-degree of the market factor node. Finally, we present a comparison with the analysis of factors cross-correlations, which further confirms the importance of causal analysis for gaining deeper insights in the dynamics of the factor system, particularly during economic downturns.Our findings are especially significant from a risk-management perspective. They link the evolution of the causal structure of equity risk factors with market volatility and a worsening macroeconomic environment, and show that, in times of financial crisis, exposure to different factors boils down to exposure to the market risk factor.
The inference of causal structures from observed data plays a key role in unveiling the underlying dynamics of the system. This paper exposes a novel method, named Multiscale-Causal Structure Learning (MS-CASTLE), to estimate the structure of linear causal relationships occurring at different time scales. Differently from existing approaches, MS-CASTLE takes explicitly into account instantaneous and lagged inter-relations between multiple time series, represented at different scales, hinging on stationary wavelet transform and non-convex optimization. MS-CASTLE incorporates, as a special case, a single-scale version named SS-CASTLE, which compares favorably in terms of computational efficiency, performance and robustness with respect to the state of the art onto synthetic data. We used MS-CASTLE to study the multiscale causal structure of the risk of 15 global equity markets, during covid-19 pandemic, illustrating how MS-CASTLE can extract meaningful information thanks to its multiscale analysis, outperforming SS-CASTLE. We found that the most persistent and strongest interactions occur at mid-term time resolutions. Moreover, we identified the stock markets that drive the risk during the considered period: Brazil, Canada and Italy. The proposed approach can be exploited by financial investors who, depending to their investment horizon, can manage the risk within equity portfolios from a causal perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.