Members of the Ly-60uPAR protein family share one or several repeat units of the Ly-60uPAR domain that is defined by a distinct disulfide bonding pattern between 8 or 10 cysteine residues. The Ly-60uPAR protein family can be divided into two subfamilies. One comprises GPI-anchored glycoprotein receptors with 10 cysteine residues. The other subfamily includes the secreted single-domain snake and frog cytotoxins, and differs significantly in that its members generally possess only eight cysteines and no GPI-anchoring signal sequence. We report the purification and structural characterization of human SLURP-1~secreted mammalian Ly-60uPAR related protein 1! from blood and urine peptide libraries. SLURP-1 is encoded by the ARS~component B!-810s locus, and appears to be the first mammalian member of the Ly-60uPAR family lacking a GPI-anchoring signal sequence. A phylogenetic analysis based on the SLURP-1 primary protein structure revealed a closer relationship to the subfamily of cytotoxins. Since the SLURP-1 gene maps to the same chromosomal region as several members of the Ly-60uPAR subfamily of glycoprotein receptors, it is suggested that both biologically distinct subfamilies might have co-evolved from local chromosomal duplication events.
We present a multidimensional approach to map the composition of complex peptide mixtures obtained as crude extract from biological liquids by (1) cation exchange chromatography and (2) subsequent microbore reversed-phase liquid chromatography and electrospray mass spectrometry coupling (LC-MS). Human hemofiltrate is an equivalent to blood and is used to obtain peptide material in large quantities from patients with chronic renal failure. The upper exclusion limit of the filtration membranes used results in a protein-free filtrate containing peptides in a range up to 20 ku. Using this unique peptide source, several thousand peptides were detected and an LC-MS data base of circulating human peptides was created. The search for known peptides by their molecular mass is a reliable method to guide peptide purification.
Progress in the sequencing of genomes has resulted in an increasing demand for a functional analysis of gene products in order to understand the underlying physiology. Proteomics has established itself as a highly valuable technology for producing functionally related data in an unparalleled fashion, but is methodologically restricted to the analysis of proteins with higher molecular masses (>10 kDa). The development of a technology which covers peptides with low molecular weight and small proteins (0.5 to 15 kDa) was necessary, since peptides, amongst them families of hormones, cytokines and growth factors, play a central role in many biological processes. To summarise the technologies used for this approach the term "peptidomics" is introduced. In this article, we present the rationale and first results of a novel, universal peptide display approach for the analysis and visualisation of peptides and small proteins from biological samples. Special attention is given to samples derived from extracellular fluids such as blood plasma and cerebrospinal fluid. Additionally, a high throughput identification procedure for the analysis of peptides in their native and processed molecular form is outlined.
Biomarker discovery in human urine has become an evolving and potentially valuable topic in relation to renal function and diseases of the urinary tract. In order to deliver on the promises and to facilitate the development of validated biomarkers or biomarker panels, protein and peptide profiling techniques need high sample throughput, speed of analysis, and reproducibility of results. Here, we outline the performance characteristics of the liquid chromatography/MALDI-TOF-MS based differential peptide display (DPD(1)) approach for separating, detecting, abundance profiling and identification of native peptides derived from human urine. The typical complexity of peptides in human urine (resolution of the technique with respect to detectable number of peptides), the reproducibility (coefficient of variation for abundance profiles of all peptides detected in biological samples) and dynamic range of the technique as well as the lower limit of detection were characterized. A substantial number of peptides present in normal human urine were identified and compared to findings in four published proteome studies. In an explorative approach, pathological urines from patients suffering from post-renal-filtration diseases were qualitatively compared to normal urine. In conclusion, the peptidomics technology as shown here has a great potential for high throughput and high resolution urine peptide profiling analyses. It is a promising tool to study not only renal physiology and pathophysiology and to determine new biomarkers of renal diseases; it also has the potential to study remotely localized or systemic aberrations within human biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.