BackgroundPrevious studies have suggested that elevated neutrophil-to-lymphocyte ratio (NLR) is prognostic for worse outcomes in patients with a variety of solid cancers, including those treated with immune checkpoint inhibitors.MethodsThis was a retrospective analysis of 97 consecutive patients with stage IV melanoma who were treated with nivolumab. Baseline NLR and derived (d) NLR were calculated and, along with other characteristics, correlated with progression-free survival (PFS) and overall survival (OS) in univariate and multivariate analyses. The best cutoff values for NLR and dNLR were derived using Cutoff Finder software based on an R routine which optimized the significance of the split between Kaplan-Meier survival curves.ResultsIn univariate analysis, increasing absolute neutrophil count (ANC), NLR, dNLR and lactate dehydrogenase (LDH) (continuous variables) were all significantly associated with OS. Only NLR (hazard ratio [HR] = 2.85; 95% CI 1.60–5.08; p < 0.0001) and LDH (HR = 2.51; 95% CI 1.36–4.64; p < 0.0001) maintained a significant association with OS in multivariate analysis. Patients with baseline NLR ≥5 had significantly worse OS and PFS than patients with NLR < 5, as did patients with baseline dNLR ≥3 versus < 3. Optimal cut-off values were ≥ 4.7 for NLR and ≥ 3.8 for dNLR. Using this ≥4.7 cut-off for NLR, the values for OS and PFS were overlapping to the canonical cut-off for values, and dNLR< 3.8 was also associated with better OS and PFS.ConclusionBoth Neutrophil-to-lymphocyte ratio (NLR) and derived (d) NLR were associated with improved survival when baseline levels were lower than cut-off values. NLR and dNLR are simple, inexpensive and readily available biomarkers that could be used to help predict response to immunotherapy in patients with advanced melanoma.Electronic supplementary materialThe online version of this article (10.1186/s40425-018-0383-1) contains supplementary material, which is available to authorized users.
PD-1 blockade represents a major therapeutic avenue in anticancer immunotherapy. Delineating mechanisms of secondary resistance to this strategy is increasingly important. Here, we identified the deleterious role of signaling via the type I interferon (IFN) receptor in tumor and antigen presenting cells, that induced the expression of nitric oxide synthase 2 (NOS2), associated with intratumor accumulation of regulatory T cells (Treg) and myeloid cells and acquired resistance to anti-PD-1 monoclonal antibody (mAb). Sustained IFNβ transcription was observed in resistant tumors, in turn inducing PD-L1 and NOS2 expression in both tumor and dendritic cells (DC). Whereas PD-L1 was not involved in secondary resistance to anti-PD-1 mAb, pharmacological or genetic inhibition of NOS2 maintained long-term control of tumors by PD-1 blockade, through reduction of Treg and DC activation. Resistance to immunotherapies, including anti-PD-1 mAb in melanoma patients, was also correlated with the induction of a type I IFN signature. Hence, the role of type I IFN in response to PD-1 blockade should be revisited as sustained type I IFN signaling may contribute to resistance to therapy.
Purpose To investigate changes of peripheral blood biomarkers and their impact on clinical outcome following treatment with ipilimumab in advanced melanoma patients. Experimental Design Changes in blood counts and the frequency of circulating immune cell populations analyzed by flow cytometry were investigated in 82 patients to compare baseline values with different time-points after starting ipilimumab. Endpoints were overall survival (OS) and best clinical response. Statistical calculations were done by Wilcoxon-matched pairs tests, Fisher exact test, Kaplan–Meier analysis, and Cox regression analysis. Results Increases in absolute lymphocyte counts (ALC) 2 to 8 weeks (P = 0.003) and in percentages of CD4+and CD8+T cells 8 to 14 weeks (P = 0.001 and P = 0.02) after the first dose of ipilimumab were correlated with improved survival. These associations did not meet significance criteria, when conservatively adjusted for multiple testing, but were additionally correlated with clinical responses (all P < 0.05). However, validation is required. Increases in all three factors were observed in 36% of patients, who had a favorable outcome and survival probabilities of 93.3% and 63.8% at 12 and 24 months, respectively. A partial or complete response was observed in 71% of these patients compared with only 8% in patients with decreases in ≥1 of the 3 factors, respectively. Changes of regulatory T cells or myeloid-derived suppressor cells were not associated with OS. Conclusions Increases of ALC observed 2 to 8 weeks after initiation of ipilimumab and delayed increases in CD4+ and CD8+ T cells reflect changes associated with positive outcome. These changes represent surrogate marker candidates and warrant further validation.
Therapy of melanoma patients harboring activating mutations in the BRAF (V-raf murine sarcoma viral oncogene homolog B1) oncogene with a combination of BRAF and MEK inhibitors is plagued by the development of drug resistance. Mutational events, as well as adaptive mechanisms, contribute to the development of drug resistance. In this context we uncover here the role of a miRNA, miR-579-3p. We first show that low expression of miR-579-3p is a negative prognostic factor correlating with poor survival. Expression levels of miR-579-3p decrease from nevi to stage III/IV melanoma samples and even further in cell lines resistant to BRAF/MEK inhibitors. Mechanistically, we demonstrate that miR-579-3p acts as an oncosuppressor by targeting the 3′UTR of two oncoproteins: BRAF and an E3 ubiquitin protein ligase, MDM2. Moreover miR-579-3p ectopic expression impairs the establishment of drug resistance in human melanoma cells. Finally, miR-579-3p is strongly down-regulated in matched tumor samples from patients before and after the development of resistance to targeted therapies.miRNA | melanoma | targeted therapy | drug resistance
The RAS/MAP kinase pathway has attracted attention because activating mutations of the BRAF serine/threonine kinase was described in over 50% of melanomas. Very recently, selective and potent BRAF inhibitors have been developed. Several other signal transduction pathways have been found to be constitutively active or mutated in other subsets of melanoma tumors that are potentially targetable with new agents. Among these, NFκB is another pathway that melanoma tumors use to achieve survival, proliferation and resistance to apoptosis. Inhibition of NF-κB activation appears to be a very promising option for anti-cancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.