The paper proposes a novel concept for axels dry braking system in off-road vehicles by implementing an oil recovery system in the friction plates chamber. The new system is able to remove the oil in the discs’ chamber when they are not engaged and to replenish it when the braking system is activated and the heat generated has to be dissipated. Thus, the energy losses due to the oil splashing will be significantly reduced with remarkable effects on the fuel consumption of the vehicle. Since experimental measurements are very difficult to carry out on a real system, a simplified geometry is designed and an ad-hoc test rig realized. Fast imaging techniques are used to capture the multiphase flow pattern within the friction plates chamber at different rotational speeds of the axel. The experimental results are used to validate a full 3D multi-phase CFD approach. A good agreement between the measurements and the calculations is found.
The numerical modeling is therefore employed to predict the flow distribution in the real geometry and under actual operating conditions. A modular approach is adopted for the domain subdivision in order to represent accurately the three dimensional geometrical features, while the volume of fluid approach is used to model the multi-phase flow that characterizes the component. A conjugate heat transfer model is also adopted to predict the heat transferred from the discs to the working fluid and how the fluid is dissipating the heat within the component. By means of the numerical analysis the geometry of the real system is designed in order to improve the performance of the dry braking systems both in terms of energy saving and oil cooling.
This paper wants to investigate the effects of eco-friendly fluids on the thermo-fluid-dynamic performance of external gear pumps in order to provide a first response to the increasingly urgent demands of the green economy. A computational fluid dynamics (CFD) approach based on the overset mesh technique was developed for the simulation of the full 3D geometry of an industrial pump, including all the characteristic leakages between components. A sensibility analysis of the numerical model with respect to different fluid properties was performed on a commonly used mineral oil, showing the key role of the fluid compressibility on the prediction of the pump volumetric efficiency. Moreover, the influence of temperature internal variations on both fluid density and viscosity were included. The BIOHYDRAN TMP 46 eco-friendly industrial oil and olive oil were further considered in this work, and the results of the simulations were compared for the three fluid configurations. A slightly lower volumetric efficiency was derived for the olive oil application against the other two conditions, but suggestive improvements were produced in terms of pressure and temperature distributions. Therefore, based on the obtained results, this paper encourages research activity towards the use of eco-friendly fluids in the hydraulic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.