In a ΛCDM Universe, the specific stellar angular momentum ( j * ) and stellar mass (M * ) of a galaxy are correlated as a consequence of the scaling existing for dark matter haloes ( j h ∝ M 2/3 h ). The shape of this law is crucial to test galaxy formation models, which are currently discrepant especially at the lowest masses, allowing to constrain fundamental parameters, e.g. the retained fraction of angular momentum. In this study, we accurately determine the empirical j * − M * relation (Fall relation) for 92 nearby spiral galaxies (from S0 to Irr) selected from the Spitzer Photometry and Accurate Rotation Curves (SPARC) sample in the unprecedented mass range 7 log M * /M 11.5. We significantly improve all previous estimates of the Fall relation by determining j * profiles homogeneously for all galaxies, using extended Hi rotation curves, and selecting only galaxies for which a robust j * could be measured (converged j * (< R) radial profile). We find the relation to be well described by a single, unbroken power-law j * ∝ M α * over the entire mass range, with α = 0.55 ± 0.02 and orthogonal intrinsic scatter of 0.17 ± 0.01 dex. We finally discuss some implications for galaxy formation models of this fundamental scaling law and, in particular, the fact that it excludes models in which discs of all masses retain the same fraction of the halo angular momentum.
We use the MusE GAs FLOw and Wind (MEGAFLOW) survey to study the kinematics of extended disk-like structures of cold gas around z ≈ 1 star-forming galaxies. The combination of VLT/MUSE and VLT/UVES observations allows us to connect the kinematics of the gas measured through Mg ii quasar absorption spectroscopy to the kinematics and orientation of the associated galaxies constrained through integral field spectroscopy. Confirming previous results, we find that the galaxy-absorber pairs of the MEGAFLOW survey follow a strong bimodal distribution, consistent with a picture of Mg ii absorption being predominantly present in outflow cones and extended disk-like structures. This allows us to select a bona-fide sample of galaxy-absorber pairs probing these disks for impact parameters of 10-70 kpc. We test the hypothesis that the disk-like gas is co-rotating with the galaxy disks, and find that for 7 out of 9 pairs the absorption velocity shares the sign of the disk velocity, disfavouring random orbits. We further show that the data are roughly consistent with inflow velocities and angular momenta predicted by simulations, and that the corresponding mass accretion rates are sufficient to balance the star formation rates.
Star formation (SF) laws are fundamental relations between the gas content of a galaxy and its star formation rate (SFR) and play key roles in galaxy evolution models. In this paper, we present new empirical SF laws of disc galaxies based on volume densities. Following the assumption of hydrostatic equilibrium, we calculated the radial growth of the thickness of the gaseous discs in the combined gravitational potential of dark matter, stars, and gas for 12 nearby star-forming galaxies. This allowed us to convert the observed surface densities of gas and SFR into the deprojected volume densities. We found a tight correlation with slope in the range 1.3-1.9 between the volume densities of gas (HI+H 2 ) and the SFR with a significantly smaller scatter than the surface-based (Kennicutt) law and no change in the slope over five orders of magnitude. This indicates that taking into account the radial increase of the thickness of galaxy discs is crucial to reconstruct their three-dimensional density profiles, in particular in their outskirts. Moreover, our result suggests that the break in the slope seen in the Kennicutt law is due to disc flaring rather than to a drop of the SF efficiency at low surface densities. Surprisingly, we discovered an unexpected correlation between the volume densities of HI and SFR, indicating that the atomic gas is a good tracer of the cold star-forming gas, especially in low density HI-dominated environments.
With a projected size of about 450 kpc at z 2.3, the Slug Lyα nebula is a rare laboratory to study, in emission, the properties of the intergalactic gas in the Cosmic Web. Since its discovery, the Slug has been the subject of several spectroscopic follow-ups to constrain the properties of the emitting gas. Here we report the results of a deep MUSE integral-field spectroscopic search for non-resonant, extended He λ1640 and metal emission. Extended He radiation is detected on scales of about 100 kpc, but only in some regions associated with the bright Lyα emission and a continuum-detected source, implying large and abrupt variations in the line ratios across adjacent regions in projected space. The recent detection of associated Hα emission and similar abrupt variations in the Lyα kinematics, strongly suggest that the He /Lyα gradient is due to large variations in the physical distances between the associated quasar and these regions. This implies that the overall length of the emitting structure could extend to physical Mpc scales and be mostly oriented along our line of sight. At the same time, the relatively low He /Lyα values suggest that the emitting gas has a broad density distribution that -if expressed in terms of a lognormal -implies dispersions as high as those expected in the interstellar medium of galaxies. These results strengthen the possibility that the density distribution of intergalactic gas at high-redshift is extremely clumpy and multiphase on scales below our current observational spatial resolution of a few physical kpc.
We present spatially resolved maps of six individually-detected Lyman α haloes (LAHs) as well as a first statistical analysis of the Lyman α (Lyα) spectral signature in the circum-galactic medium of high-redshift star-forming galaxies (−17.5 > MUV > −21.5) using the Multi-Unit Spectroscopic Explorer. Our resolved spectroscopic analysis of the LAHs reveals significant intrahalo variations of the Lyα line profile. Using a three-dimensional two-component model for the Lyα emission, we measured the full width at half maximum (FWHM), the peak velocity shift, and the asymmetry of the Lyα line in the core and in the halo of 19 galaxies. We find that the Lyα line shape is statistically different in the halo compared to the core (in terms of width, peak wavelength, and asymmetry) for ≈40% of our galaxies. Similarly to object-by-object based studies and a recent resolved study using lensing, we find a correlation between the peak velocity shift and the width of the Lyα line both at the interstellar and circum-galactic scales. This trend has been predicted by radiative transfer simulations of galactic winds as a result of resonant scattering in outflows. While there is a lack of correlation between the spectral properties and the spatial scale lengths of our LAHs, we find a correlation between the width of the line in the LAH and the halo flux fraction. Interestingly, UV bright galaxies (MUV < −20) show broader, more redshifted, and less asymmetric Lyα lines in their haloes. The most significant correlation found is for the FWHM of the line and the UV continuum slope of the galaxy, suggesting that the redder galaxies have broader Lyα lines. The generally broad and red line shapes found in the halo component suggest that the Lyα haloes are powered either by scattering processes through an outflowing medium, fluorescent emission from outflowing cold clumps of gas, or a mix of both. Considering the large diversity of the Lyα line profiles observed in our sample and the lack of strong correlation, the interpretation of our results is still broadly open and underlines the need for realistic spatially resolved models of the LAHs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.