Phosphorylation of the regulatory light chains of myosin II (rMLC) by the Ca(2+)/calmodulin-dependent myosin light-chain kinase (MLCK) and dephosphorylation by a type 1 phosphatase (MLCP), which is targeted to myosin by a regulatory subunit (MYPT1), are the predominant mechanisms of regulation of smooth muscle tone. The activities of both enzymes are modulated by several protein kinases. MLCK is inhibited by the Ca(2+)/calmodulin-dependent protein kinase II, whereas the activity of MLCP is increased by cGMP and perhaps also cAMP-dependent protein kinases. In either case, this results in a decrease in the Ca(2+) sensitivity of rMLC phosphorylation and force production. The activity of MLCP is inhibited by Rho-associated kinase, one of the effectors of the monomeric GTPase Rho, and protein kinase C, leading to an increase in Ca(2+) sensitivity. Hence, smooth muscle tone appears to be regulated by a network of activating and inactivating intracellular signaling cascades.
Background-Cardiac troponins in blood are the most preferred markers of myocardial damage. The fact that they are normally not found in the circulation provides a high level of clinical sensitivity and specificity even when cardiac lesions are small. After myocardial injury, the troponins enter the circulation, where they can be used for diagnosis of acute coronary syndromes. Thus, the cardiac troponins are paramount for disease classification and risk stratification. However, little is known about the long-term effects of the released troponins on cardiac function. Methods and Results-In this study we prepared recombinant murine cardiac troponin I (mc-TnI) and murine cardiac troponin T and used them to immunize mice. We report that A/J mice immunized with mc-TnI developed severe inflammation of the myocardium with increased expression of inflammatory chemokines RANTES (regulated on activation normal T cell expressed and secreted), monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1␣, MIP-1, MIP-2, T-cell activation gene 3, and eotaxin and chemokine receptors CCR1, CCR2, and CCR5. The inflammation was followed by cardiomegaly, fibrosis, reduced fractional shortening, and 30% mortality over 270 days. In contrast, mice immunized with murine cardiac troponin T or with the control buffer showed little or no inflammation and no death. Furthermore, we demonstrate that mice preimmunized with mc-TnI before left anterior descending coronary artery ligation showed greater infarct size, more fibrosis, higher inflammation score, and reduced fractional shortening. Conclusions-Overall, our results show for the first time that provocation of an autoimmune response to mc-TnI induces severe inflammation in the myocardium followed by fibrosis and heart failure with increased mortality in mice.
Kinetics of force development and relaxation after rapid application and removal of Ca(2+) were measured by atomic force cantilevers on subcellular bundles of myofibrils prepared from guinea pig left ventricles. Changes in the structure of individual sarcomeres were simultaneously recorded by video microscopy. Upon Ca(2+) application, force developed with an exponential rate constant k(ACT) almost identical to k(TR), the rate constant of force redevelopment measured during steady-state Ca(2+) activation; this indicates that k(ACT) reflects isometric cross-bridge turnover kinetics. The kinetics of force relaxation after sudden Ca(2+) removal were markedly biphasic. An initial slow linear decline (rate constant k(LIN)) lasting for a time t(LIN) was abruptly followed by an ~20 times faster exponential decay (rate constant k(REL)). k(LIN) is similar to k(TR) measured at low activating [Ca(2+)], indicating that k(LIN) reflects isometric cross-bridge turnover kinetics under relaxed-like conditions (see also. Biophys. J. 83:2142-2151). Video microscopy revealed the following: invariably at t(LIN) a single sarcomere suddenly lengthened and returned to a relaxed-type structure. Originating from this sarcomere, structural relaxation propagated from one sarcomere to the next. Propagated sarcomeric relaxation, along with effects of stretch and P(i) on relaxation kinetics, supports an intersarcomeric chemomechanical coupling mechanism for rapid striated muscle relaxation in which cross-bridges conserve chemical energy by strain-induced rebinding of P(i).
Next to changes in cytosolic [Ca(2+)], members of the Rho subfamily of small GTPases, in particular Rho and its effector Rho kinase, also known as ROK or ROCK, emerged as key regulators of smooth muscle function in health and disease. In this review, we will focus on the regulation of the contractile machinery by Rho/ROK signaling and its interaction with PKC and cyclic nucleotide signaling. We will briefly discuss the emerging evidence that remodeling of cortical actin is necessary for contraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.