Transforming growth factor-β1 (TGF-
Mice lacking TGF-β3 exhibit an incompletely penetrant failure of the palatal shelves to fuse leading to cleft palate. The defect appears to result from impaired adhesion of the apposing medial edge epithelia of the palatal shelves and subsequent elimination of the mid-line epithelial seam. No craniofacial abnormalities were observed. This result demonstrates that TGF-β3 affects palatal shelf fusion by an intrinsic, primary mechanism rather than by effects secondary to craniofacial defects.Members of the transforming growth factor-β (TGF-β) gene family have biological activities that control cell proliferation, migration and differentiation, regulation of extracellular matrix deposition and epithelial-mesenchymal transformation [1][2][3] . Mammals contain three highly conserved isoforms of TGF-β, termed TGF-β1, TGF-β2 and TGF-β3, which display distinctive, although at times overlapping, spatial and temporal expression patterns [4][5][6] . Previous studies suggested that TGF-β3 may play a crucial role during palatogenesis 7-9 , Meckel's cartilage formation 10 , cardiac morphogenesis 11 , mammary gland development 12 and wound healing 13 . Other tissues expressing TGF-β3 in significant levels are cartilage, bone, brain and lung [4][5][6]14 .In mammalian palatogenesis apposition of the palatal shelves, adhesion of the medial edge epithelia (MEE) and subsequent elimination of the epithelial seam lead to a seamless mesenchymal shelf separating the oral and nasal cavities 15 . In vitro organ culture studies indicate that TGF-β1 and TGF-β2 accelerate palatal shelf fusion 16,17 and that antisense oligodeoxynucleotides or neutralizing antibodies to TGF-β3, but not to TGF-β1 or TGF-β2, block the fusion process 9 . We have now created mice deficient in TGF-β3, and show that this factor has a role in palatal shelf fusion by means of an intrinsic, primary mechanism and not by effects secondary to craniofacial morphometrics. A comparison of this defect to the inflammatory disorder of TGF-β1-deficient mice [18][19][20][21] Mutation of TGF-β3 in ES cellsThe TGF-β3 gene was mutated in ES cells (Fig. 1a) by replacing exon 6, the first full exon encoding sequences of the active domain of the protein, with the neomycin-resistance gene from pMC1neo 22 . Diagnostic Southern blots of the clone I98 indicated that the locus was successfully targeted; the proper genomic regions flanking both sides of the target site remained intact (Fig. 1b). Probing with a neo-gene probe indicated that there was only one integration site (not shown). Consequently, only the TGF-β3 locus has been disrupted. RT-PCR analysis of whole 11.5- (Fig. 1c) and 15.5-day embryos (not shown) indicated no TGF-β3 expression in homozygous mutant embryos, and revealed no significant change in the expression of TGF-β1 or TGF-β2 in the absence of TGF-β3. Cleft palate in TGF-β3 null mutantsThe targeted ES cell clone I98 was used to produce chi-maeric mice, which were mated with CF-1, C57BL/6 or 129/Sv mice. Heterozygous offspring showed no apparent phenotype. Interc...
(2015) Albumin-deficient mouse models for studying metabolism of human albumin and pharmacokinetics of albumin-based drugs, mAbs, 7:2, 344-351, DOI: 10.1080DOI: 10. /19420862.2015 To link to this article: https://doi.org/10. 1080/19420862.2015 Serum albumin is the major determinant of blood colloidal osmotic pressure acting as a depot and distributor of compounds including drugs. In humans, serum albumin exhibits an unusually long half-life mainly due to protection from catabolism by neonatal Fc receptor (FcRn)-mediated recycling. These properties make albumin an attractive courier of therapeutically-active compounds. However, pharmaceutical research and development of albumin-based therapeutics has been hampered by the lack of appropriate preclinical animal models. To overcome this, we developed and describe the first mouse with a genetic deficiency in albumin and its incorporation into an existing humanized FcRn mouse model, B6.Cg-Fcgrt tm1Dcr Tg(FCGRT)32Dcr/DcrJ (Tg32). Albumin-deficient strains (Alb -/-) were created by TALEN-mediated disruption of the albumin (Alb) gene directly in fertilized oocytes derived from Tg32 mice and its nontransgenic background control, C57BL/6J (B6). The resulting Alb -/-strains are analbuminemic but healthy. Intravenous administration of human albumin to Tg32-Alb -/-mFcRn -/-hFcRn Tg/Tg ) mice results in a remarkably extended human albumin serum half-life of »24 days, comparable to that found in humans, and in contrast to half-lives of 2.6-5.8 d observed in B6, B6-Alb -/-and Tg32 strains. This striking increase can be explained by the absence of competing endogenous mouse albumin and the presence of an active human FcRn. These novel albumin-deficient models provide unique tools for investigating the biology and pathobiology of serum albumin and are a more appropriate rodent surrogates for evaluating human serum albumin pharmacokinetics and albumin-based compounds.
A key element for the successful development of novel therapeutic antibodies is to fully understand their pharmacokinetic and pharmacodynamic behavior before performing clinical trials. While many in vitro modeling approaches exist, these simply cannot substitute for data obtained from appropriate animal models. It was established quite early that the unusual long serum half-life of immunoglobulin G’s (IgGs) and Fc domains are due to their rescue and recycling by the neonatal Fc receptor (FcRn). The diverse roles of FcRn became apparent after isolation and cloning. Interesting are the significant species differences between rodent and human FcRn reactivity, rendering wild type rodents an inadequate model for studying IgG serum half-life. With the advance of genetic engineering mouse models have been established expressing human FcRn, and lacking mouse FcRn protein. These models have become highly relevant tools for serum half-life analysis of Fc-containing compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.