Summary
Objective
Dravet syndrome is a rare neurodevelopmental disease, characterized by general cognitive impairment and severe refractory seizures. The majority of patients carry the gene mutation SCN1A, leading to a defective sodium channel that contributes to pathogenic brain excitability. A γ‐aminobutyric acid (GABAergic) impairment, as in other neurodevelopmental diseases, has been proposed as an additional mechanism, suggesting that seizures could be alleviated by GABAergic therapies. However, up to now the physiological mechanisms underlying the GABAergic dysfunction in Dravet syndrome are still unknown due to the scarce availability of this brain tissue. Here we studied, for the first time, human GABAA‐evoked currents using cortical brain tissue from Dravet syndrome patients.
Methods
We transplanted in Xenopus oocytes cell membranes obtained from brain tissues of autopsies of Dravet syndrome patients, tuberous sclerosis complex patients as a pathological comparison, and age‐matched controls. Additionally, experiments were performed on oocytes expressing human α1β2γ2 and α1β2 GABAA receptors. GABAA currents were recorded using the two‐microelectrodes voltage‐clamp technique. Quantitative real‐time polymerase chain reaction, immunohistochemistry, and double‐labeling techniques were carried out on the same tissue samples.
Results
We found (1) a decrease in GABA sensitivity in Dravet syndrome compared to controls, which was related to an increase in α4‐ relative to α1‐containing GABAA receptors; (2) a shift of the GABA reversal potential toward more depolarizing values in Dravet syndrome, and a parallel increase of the chloride transporters NKCC1/KCC2 expression ratio; (3) an increase of GABAA currents induced by low doses of cannabidiol both in Dravet syndrome and tuberous sclerosis complex comparable to that induced by a classical benzodiazepine, flunitrazepam, that still persists in γ‐less GABAA receptors.
Significance
Our study indicates that a dysfunction of the GABAergic system, considered as a feature of brain immaturity, together with defective sodium channels, can contribute to a general reduction of inhibitory efficacy in Dravet brain, suggesting that GABAA receptors could be a target for new therapies.
SummaryCannabidivarin (CBDV) and cannabidiol (CBD) have recently emerged among cannabinoids for their potential antiepileptic properties, as shown in several animal models. We report the case of a patient affected by symptomatic partial epilepsy who used cannabis as self‐medication after the failure of countless pharmacological/surgical treatments. Clinical and video electroencephalogram (EEG) evaluations were periodically performed, and the serum levels of CBDV, CBD, and Δ9‐tetrahydrocannabinol were repeatedly measured. After cannabis administration, a dramatic clinical improvement, in terms of both decrease in seizure frequency and recovery of cognitive functions, was observed, which might parallel high CBDV plasma concentrations. To widen the spectrum of CBDV possible mechanisms of action, electrophysiological methods were applied to investigate whether it could exert some effects on γ‐aminobutyric acid (GABA)A receptors. Our experiments showed that, in human hippocampal tissues of four patients affected by drug‐resistant temporal lobe epilepsy (TLE) transplanted in Xenopus oocytes, there is decrease of current rundown (i.e., reduction of use‐dependent GABAA current) after prolonged exposure to CBDV. This result has been confirmed using a single case of Rasmussen encephalitis (RE). Our patient's electroclinical improvement supports the hypothesis that cannabis could actually represent an effective, well‐tolerated antiepileptic drug. Moreover, the experimental data suggest that CBDV may greatly contribute to cannabis anticonvulsant effect through its possible GABAergic action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.