Hydroxyl-terminated P(S-r-MMA) random copolymers (RCPs) with molecular weights (Mn) from 1700 to 69000 and a styrene unit fraction of approximately 61% were grafted onto a silicon oxide surface and subsequently used to study the orientation of nanodomains with respect to the substrate, in cylinder-forming PS-b-PMMA block copolymer (BCP) thin films. When the thickness (H) of the grafted layer is greater than 5-6 nm, a perpendicular orientation is always observed because of the efficient decoupling of the BCP film from the polar SiO2 surface. Conversely, if H is less than 5 nm, the critical thickness of the grafted layer, which allows the neutralization of the substrate and promotion of the perpendicular orientation of the nanodomains in the BCP film, is found to depend on the Mn of the RCP. In particular, when Mn = 1700, a 2.0 nm thick grafted layer is sufficient to promote the perpendicular orientation of the PMMA cylinders in the PS-b-PMMA BCP film. A proximity shielding mechanism of the BCP molecules from the polar substrate surface, driven by chain stretching of the grafted RCP molecules, is proposed.
The pattern coarsening dynamics in symmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymer thin films under conventional thermal treatments is extremely slow, resulting in limited correlation length values even after prolonged annealing at relatively high temperatures. This study describes the kinetics of symmetric block copolymer microphase separation when subjected to a thermal treatment based on the use of a Rapid Thermal Processing (RTP) system. The proposed methodology allows self-organization of symmetric PS-b-PMMA thin films in few seconds, taking advantage of the amount of solvent naturally trapped within the film during the spinning process. Distinct and self-registered morphologies, coexisting along the sample thickness, are obtained in symmetric PS-b-PMMA samples, with periodic lamellae laying over a hexagonal pattern of PMMA cylinders embedded in the PS matrix and perpendicularly oriented with respect to the substrate. The ordering dynamics and morphological evolution of the coexisting dual structures are delineated and the intimate mechanism of the self-assembly and coarsening processes is discussed and elucidated
Sequential infiltration synthesis (SIS) provides a successful route to grow inorganic materials into polymeric films by penetrating of gaseous precursors into the polymer, both in order to enhance the functional properties of the polymer creating an organic-inorganic hybrid material, and to fabricate inorganic nanostructures when infiltrating in patterned polymer films or in selfassembled block copolymers. A SIS process consists in a controlled sequence of metal organic precursor and co-reactant vapor exposure cycles of the polymer films in an atomic layer deposition (ALD) reactor. In this work, we present a study of the SIS process of alumina using trimethylaluminum (TMA) and H2O in various polymer films using in situ dynamic spectroscopic ellipsometry (SE). In situ dynamic SE enables time-resolved monitoring of the swelling of the polymer, which is relevant to the diffusion and retain of the metal precursor into the polymer itself. Different swelling behaviour of poly(methylmethacrylate) (PMMA) and polystyrene (PS) was observed when exposed to TMA vapor. PMMA films swell more significantly than PS films do, resulting in very different infiltrated Al2O3 thickness after polymer removal in O2 plasma. PMMA films reach different swollen states upon TMA exposure and reaction with H2O, depending on the TMA dose and on the purge duration after TMA exposure, which correspond to different amounts of metal precursor retained inside the polymer and converted to alumina. Diffusion coefficients of TMA in PMMA were extracted investigating the swelling of pristine PMMA films during TMA infiltration and shown to be dependent on polymer molecular weight. In situ dynamic SE monitoring allows to control the SIS process tuning it from an ALD-like process for long purge to a chemical vapour deposition-like process selectively confined inside the polymer films.
The self-assembly of asymmetric polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymer based nanoporous thin films over a broad range of molar mass (Mn) between 39 kg·mol(-1) and 205 kg·mol(-1) is obtained by means of a simple thermal treatment. In the case of standard thermal treatments, the self-assembly process of block copolymers is hindered at small Mn by thermodynamic limitations and by a large kinetic barrier at high Mn. We demonstrate that a fine tuning of the annealing parameters, performed by a Rapid Thermal Processing (RTP) machine, permits us to overcome those limitations. Cylindrical features are obtained by varying Mn and properly changing the corresponding annealing temperature, while keeping constant the annealing time (900 s), the film thickness (∼30 nm), and the PS fraction (∼0.7). The morphology, the characteristic dimensions (i.e., the pore diameter d and the pore-to-pore distance L0), and the order parameter (i.e., the lattice correlation length ξ) of the samples are analyzed by scanning electron microscopy and grazing-incidence small-angle X-ray scattering, obtaining values of d ranging between 12 and 30 nm and L0 ranging between 24 and 73 nm. The dependence of L0 as a 0.67 power law of the number of segments places these systems inside the strong segregation limit regime. The experimental results evidence the capability to tailor the self-assembly processes of block copolymers over a wide range of molecular weights by a simple thermal process, fully compatible with the stringent constraints of lithographic applications and industrial manufacturing.
Self-assembling block copolymers generate nanostructured patterns which are useful for a wide range of applications. In this paper we demonstrate the capability to control the morphology of the self-assembling process of PS-b-PMMA diblock copolymer thin films on unpatterned surfaces by means of fast thermal treatment performed in a rapid thermal processing machine. The methodology involves the use of radiation sources in order to rapidly drive the polymeric film above the glass transition temperature. Highly ordered patterns were obtained for perpendicular-oriented cylindrical and lamellar PS-b-PMMA block copolymers in less than 60 s. This approach offers the unprecedented opportunity to investigate in detail the kinetics of the block copolymer self-assembly during the early stages of the process, providing a much deeper understanding of the chemical and physical phenomena governing these processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.