Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
There are concerns of a high barotrauma rate in coronavirus disease 2019 patients with acute respiratory distress syndrome receiving invasive mechanical ventilation. However, a few studies were published, and reported rates were highly variable. We performed a systematic literature review to identify rates of barotrauma, pneumothorax, and pneumomediastinum in coronavirus disease 2019 acute respiratory distress syndrome patients receiving invasive mechanical ventilation.DATA SOURCE: PubMed and Scopus were searched for studies reporting barotrauma event rate in adult coronavirus disease 2019 patients receiving invasive mechanical ventilation. STUDY SELECTION:We included all studies investigating adult patients with coronavirus disease 2019 acute respiratory distress syndrome requiring mechanical ventilation. Case reports, studies performed outside ICU setting, and pediatric studies were excluded. Two investigators independently screened and selected studies for inclusion. DATA EXTRACTION:Two investigators abstracted data on study characteristics, rate of pneumothorax, pneumomediastinum and overall barotrauma events, and mortality. When available, data from noncoronavirus disease 2019 acute respiratory distress syndrome patients were also collected. Pooled estimates for barotrauma, pneumothorax, and pneumomediastinum were calculated.DATA SYNTHESIS: A total of 13 studies with 1,814 invasively ventilated coronavirus disease 2019 patients and 493 noncoronavirus disease 2019 patients were included. A total of 266/1,814 patients (14.7%) had at least one barotrauma event (pooled estimates, 16.1% [95% CI,). Pneumothorax occurred in 132/1,435 patients (pooled estimates, 10.7%; 95% CI, 6.7-14.7%), whereas pneumomediastinum occurred in 162/1,432 patients (pooled estimates, 11.2%; 95% CI, 8.0-14.3%). Mortality in coronavirus disease 2019 patients who developed barotrauma was 111/198 patients (pooled estimates, 61.6%; 95% CI, 50.2-73.0%). In noncoronavirus disease 2019 acute respiratory distress syndrome patients, barotrauma occurred in 31/493 patients (6.3%; pooled estimates, 5.7%; 95% CI, −2.1% to 13.5%). CONCLUSIONS:Barotrauma occurs in one out of six coronavirus disease 2019 acute respiratory distress syndrome patients receiving invasive mechanical ventilation and is associated with a mortality rate of about 60%. Barotrauma rate may be higher than noncoronavirus disease 2019 controls.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.