Cannabinoids can affect both the activity and the expression of TRPV1-4 channels, with various potential therapeutic applications, including in the gastrointestinal tract.
Infection of man with Schistosoma species of trematode parasite causes marked chronic morbidity. Individuals that become infected with Schistosomes may develop a spectrum of pathology ranging from mild cercarial dermatitis to severe tissue inflammation, in particular within the liver and intestines, which can lead to life threatening hepatosplenomegaly. It is well established that the etiopathology during schistosomiasis is primarily due to an excessive or unregulated inflammatory response to the parasite, in particular to eggs that become trapped in various tissue. The eggs forms the foci of a classical type 2 granulomatous inflammation, characterized by an eosinophil-rich, CD4+ T helper (Th) 2 cell dominated infiltrate with additional infiltration of alternatively activated macrophages (M2). Indeed the sequela of the type 2 perioval granuloma is marked fibroblast infiltration and development of fibrosis. Paradoxically, while the granuloma is the cause of pathology it also can afford some protection, whereby the granuloma minimizes collateral tissue damage in the liver and intestines. Furthermore, the parasite is exquisitely reliant on the host to mount a granulomatous reaction to the eggs as this inflammatory response facilitates the successful excretion of the eggs from the host. In this focused review we will address the conundrum of the S. mansoni granuloma acting as both friend and foe in inflammation during infection.
This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Colon cancer affects millions of individuals in Western countries. Cannabidiol, a safe and non-psychotropic ingredient of Cannabis sativa, exerts pharmacological actions (antioxidant and intestinal antinflammatory) and mechanisms (inhibition of endocannabinoid enzymatic degradation) potentially beneficial for colon carcinogenesis. Thus, we investigated its possible chemopreventive effect in the model of colon cancer induced by azoxymethane (AOM) in mice. AOM treatment was associated with aberrant crypt foci (ACF, preneoplastic lesions), polyps, and tumour formation, up-regulation of phospho-Akt, iNOS and COX-2 and down-regulation of caspase-3. Cannabidiol-reduced ACF, polyps and tumours and counteracted AOM-induced phospho-Akt and caspase-3 changes. In colorectal carcinoma cell lines, cannabidiol protected DNA from oxidative damage, increased endocannabinoid levels and reduced cell proliferation in a CB(1)-, TRPV1- and PPARγ-antagonists sensitive manner. It is concluded that cannabidiol exerts chemopreventive effect in vivo and reduces cell proliferation through multiple mechanisms.
Background and purpose: Endocannabinoids in tissues controlling energy homeostasis are altered in obesity, thus contributing to metabolic disorders. Here we evaluate endocannabinoid dysregulation in the small intestine of mice with diet-induced obesity (DIO) and in peripheral tissues of Zucker and lean rats following food deprivation and re-feeding. Experimental approach: Intestinal transit, evaluated using rhodamine-B-labelled dextran, and small intestinal endocannabinoid levels, measured by liquid chromatography mass spectrometry, were measured in mice fed normal or high-fat diets (HFDs). Endocannabinoid levels were measured also in various tissues of lean and Zucker rats fed ad libitum or following overnight food deprivation with and without subsequent re-feeding. Key results: After 8 weeks of HFD, baseline intestinal transit was increased in DIO mice and enhanced by cannabinoid CB1 receptor antagonism less efficaciously than in lean mice. Small intestinal anandamide and 2-arachidonoylglycerol levels were reduced and increased respectively. In Zucker rats, endocannabinoids levels were higher in the pancreas, liver and duodenum, and lower in the subcutaneous adipose tissue. Food deprivation increased endocannabinoid levels in the duodenum and liver of both rat strains, in the pancreas of lean rats and in adipose tissues of Zucker rats. Conclusions and implications:Reduced anandamide levels might account for increased intestinal motility in DIO mice. Regulation of endocannabinoid levels in rat peripheral tissues, induced by food deprivation and re-feeding, might participate in food intake and energy processing and was altered in Zucker rats. These data, together with previous observations, provide further evidence for dysregulation of peripheral endocannabinoids in obesity. Pharmacology (2009) 158, 451-461; doi:10.1111/j.1476-5381.2009 published online 3 April 2009 This article is part of a themed section on Advances in Nutritional Pharmacology. To view all articles in this section visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 British Journal ofKeywords: 2-arachidonoylglycerol; anandamide; CB1; gastrointestinal motility; obesity; liver; pancreas; adipose tissue; insulin; hyperglycemia Abbreviations: 2-AG, 2-arachidonoylglycerol; ACEA, arachidonoylchloroethanolamide; AEA, anandamide; DIO, high-fat dietinduced obesity; GC, geometric centre; HFD, high-fat diet; IAA, intra-abdominal fat; WAT, white adipose tissue IntroductionIt is becoming generally accepted that the endocannabinoid system, and particularly its most studied components, the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and the cannabinoid type-1 et al., 2008), are deeply involved in the control of food intake and energy homeostasis (see Matias and Di Marzo, 2007;Cota, 2008;Jesudason and Wittert, 2008;Pagano et al., 2008). Therefore, it is not surprising that there is increasing evidence for the involvement of these molecules also in obesity and related metabolic and cardiovascular disorder...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.