Oosthuyse, T, Florence, GE, Correia, A, Smyth, C, and Bosch, AN. Carbohydrate-restricted exercise with protein increases self-selected training intensity in female cyclists but not male runners and cyclists. J Strength Cond Res 35(6): 1547–1558, 2021—Carbohydrate-restricted training challenges preservation of euglycemia and exercise intensity that precludes ergogenic gains, necessitating countering strategies. We investigated the efficacy of ingesting casein protein hydrolysate in overnight-fasted male runners, male cyclists, and female cyclists. Twenty-four overnight-fasted athletes ingested 15.8 g·h−1 casein hydrolysate or placebo-water during exercise (60–80 minutes) comprising an incremental test to exhaustion, steady-state exercise (70% Vmax or 60% peak power output, 87 ± 4% HRmax), and 20-minute time trial (TT) in a double-blind randomized crossover design, with p < 0.05 accepted as significant. Ingesting protein vs. placebo increased metabolic demand {oxygen consumption, +4.7% (95% confidence interval [CI] ± 4%), p = 0.0297; +3.2% (95% CI ± 3.4%), p = 0.061}, heart rate (p = 0.0083; p = 0.007) and rating of perceived exertion (RPE) (p = 0.0266; p = 0.0163) in male cyclists and runners, respectively, but not female cyclists. Protein vs. placebo increased carbohydrate oxidation (+0.26 [95% CI ± 0.13] g·min−1, p = 0.0007) in female cyclists alone. Cyclists reported +2 ± 1 higher RPE than runners (p = 0.0062). Glycemia was maintained only in runners and increased with protein vs. placebo after 20 minutes of steady-state exercise (+0.63 [95% CI ± 0.56] mmol·L−1, p = 0.0285). TT performance with protein vs. placebo ingestion was modestly compromised in runners (−2.8% [95% CI ± 2.2%], p = 0.0018), unchanged in male cyclists (+1.9% [95% CI ± 5.6%], p = 0.5794), and modestly improved in female cyclists (+2.5% [95% CI ± 1.8%], p = 0.0164). Casein hydrolysate ingestion during moderate to hard carbohydrate-restricted exercise increases glycemia in runners, but not cyclists. Casein hydrolysate increases metabolic demand in male athletes and carbohydrate oxidation in female cyclists and is suitable for improving carbohydrate-restricted training intensity in female but not male endurance athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.