This study adds further critical information to the limited body of knowledge on the ameliorative ability of Australian dissolved organic carbon (DOC), reinforcing the importance of DOC source and concentration as significant factors controlling the risk copper poses to organisms in freshwater systems. The ameliorative ability of five unstudied DOCs on the chronic toxicity of copper to the tropical alga Chlorella sp. was compared. Sensitivity to copper varied dramatically; effect concentrations at the 50 percent effect level (EC50) increased by up to 22-fold in the high DOC treatment compared to controls and more than 2-fold between DOCs at the same concentration. The analytical techniques, diffusive gradients in thin films (DGT) and Chelex column, were used to understand whether differences in copper toxicity could be explained by copper lability. Labile copper mirrored the trends seen in the toxicity tests; lability decreased with increasing DOC concentration and varied between DOCs at the same concentration. The equilibrium model, WHAM VII, was also used to better understand the role of the free copper ion on the toxicity observed. Disagreement between EC50 values derived using the WHAM-predicted free Cu2+ concentrations and agreement between DGT-labile and the maximum dynamic concentration (c max dyn) suggest free copper is not the sole contributor to toxicity and that the source of the specific DOCs also plays a role.
. (2015). Impact of hydrocarbons from a diesel fuel on the germination and early growth of subantarctic plants. Environmental Science Processes and Impacts, 17 (7), 1238-1248. Impact of hydrocarbons from a diesel fuel on the germination and early growth of subantarctic plants AbstractSpecial Antarctic Blend (SAB) is a diesel fuel dominated by aliphatic hydrocarbons that is commonly used in Antarctic and subantarctic regions. The past and present use of SAB fuel at Australia's scientific research stations has resulted in multiple spills, contaminating soils in these pristine areas. Despite this, no soil quality guidelines or remediation targets have been developed for the region, primarily due to the lack of established indigenous test species and subsequent biological effects data. In this study, twelve plant species native to subantarctic regions were collected from Macquarie Island and evaluated to determine their suitably for use in laboratory-based toxicity testing, using germination success and seedling growth (shoot and root length) as endpoints. Two soil types (low and high organic carbon (OC)) were investigated to reflect the variable OC content found in soils on Macquarie Island. These soils were spiked with SAB fuel and aged for 14 days to generate a concentration series of SAB-contaminated soils. Exposure doses were quantified as the concentration of total petroleum hydrocarbons (TPH, nC9-nC18) on a soil dry mass basis. Seven species successfully germinated on control soils under laboratory conditions, and four of these species (Colobanthus muscoides Hook.f., Deschampsia chapmanii Petrie, Epilobium pendunculare A.Cunn. and Luzula crinita Hook.f.) showed a dose-dependent inhibition of germination when exposed to SAB-contaminated soils. Contaminated soils with low OC were generally more toxic to plants than high organic carbon soils. Increasing soil-TPH concentrations significantly inhibited shoot and root growth, and root length was identified as the most sensitive endpoint. Although the test species were tolerant to SAB-contaminated soils in germination assays, development of early life stages (up to 28 days) were generally more sensitive indicator of exposure effects, and may be more useful endpoints for future testing. Disciplines Medicine and Health Sciences | Social and Behavioral Sciences Publication DetailsMacoustra, G. K., King, C. K., Wasley, J., Robinson, S. A. & Jolley, D. F. (2015). Impact of hydrocarbons from a diesel fuel on the germination and early growth of subantarctic plants. Environmental Science Processes and Impacts, 17 (7) Keywords: total petroleum hydrocarbons, total organic carbon, monocots, dicots, germination, root and shoot growth. 2 ABSTRACTSpecial Antarctic Blend (SAB) is a diesel fuel dominated by aliphatic hydrocarbons that is commonly used in Antarctic and subantarctic regions. The past and present use of SAB fuel at Australia's scientific research stations has resulted in multiple spills, contaminating soils in these pristine areas. Despite this, no soil quality guidel...
Elevated concentrations of As and Sb impact environmental quality and human health. In this study total and bioavailable As and Sb were measured from recently and historically contaminated soils and the phytotoxicity of these soils was evaluated with Ipomoea aquatica (35-d exposure from germination) using biomass, length of plant tissues and photosynthetic efficiency. As and Sb were both present within the soil (co-contaminated). The bioavailable As and Sb in soils were determined by a Sequential Extraction Procedure (SEP) and compared to total soil concentrations and bioaccumulation in the edible parts of I. aquatica. For both As and Sb, bioavailable concentrations increased proportionally with the total soil concentrations and greater bioavailability in recently contaminated soil was observed. Tissue dry mass and length drastically reduced with increasing total and SEP-bioavailable As and Sb soil concentrations. The total soil concentration was a less sensitive measure of the phytotoxicity of As and Sb than the bioavailable fraction. Shoot length was inhibited by 50% (EC50) at bioavailable As concentrations of 80-96 mg kg-1 in both recently and historically contaminated soils; however, bioavailable Sb EC50 for shoot length was achieved at lower bioavailable concentrations, 96 (42-219) and 12 (7-19) mg kg-1 in recently contaminated soils and historically contaminated soils, respectively. Shoot biomass was inhibited by 50% (EC50) at bioavailable As concentrations of 11 (4-30) and 49 (37-65) mg kg-1 in recently and historically contaminated soils, respectively whereas this occurred at much lower bioavailable Sb concentrations, 2-5 mg kg-1 in both recently and historically contaminated soils. Aging is important in contaminated soils, it decreases the lability of As and Sb and hence their bioavailability to agricultural plants, thus posing a lower risk of exposure of these metalloids to humans through agricultural plants grown in contaminated soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.