Histoplasma capsulatum (Hc) is a systemic, dimorphic fungal pathogen that affects upwards of 500,000 individuals in the United States annually. Hc grows as a multicellular mold at environmental temperatures; whereas, upon inhalation into a human or other mammalian host, it transforms into a unicellular, pathogenic yeast. This manuscript is focused on characterizing the DNA damage-responsive gene HcDDR48. HcDDR48 was originally isolated via a subtractive DNA library enriched for transcripts enriched in the mold-phase of Hc growth. Upon further analysis we found that HcDDR48 is not just expressed in the mold morphotype, but both growth programs dependent upon the environment. We found that HcDDR48 is involved in oxidative stress response, antifungal drug resistance, and survival within resting and activated macrophages. Growth of ddr48Δ yeasts was severely decreased when exposed to the reactive oxygen species generator paraquat, as compared to wildtype controls. We also found that ddr48Δ yeasts were 2-times more sensitive to the antifungal drugs amphotericin b and ketoconazole. To test HcDDR48s involvement in vivo, we infected resting and activated RAW 264.7 murine macrophages with Hc yeasts and measured yeast survival 24-hours post-infection. We observed a significant decrease in yeast recovery in the ddr48Δ strain compared to wildtype Hc levels. Herein, we demonstrate the importance of maintaining a functional copy of HcDDR48 in order for Hc yeasts to sense and respond to numerous environmental and host-associated stressors.
The stress response gene DDR48 has been characterized in Saccharomyces cerevisiae and Candida albicans to be involved in combating various cellular stressors, from oxidative agents to antifungal compounds. Surprisingly, the biological function of DDR48 has yet to be identified, though it is likely an important part of the stress response. To gain insight into its function, we characterized DDR48 in the dimorphic fungal pathogen Histoplasma capsulatum. Transcriptional analyses showed preferential expression of DDR48 in the mycelial phase. Induction of DDR48 in Histoplasma yeasts developed after treatment with various cellular stress compounds. We generated a ddr48∆ deletion mutant to further characterize DDR48 function. Loss of DDR48 alters the transcriptional profile of the oxidative stress response and membrane synthesis pathways. Treatment with ROS or antifungal compounds reduced survival of ddr48∆ yeasts compared to controls, consistent with an aberrant cellular stress response. In addition, we infected RAW 264.7 macrophages with DDR48-expressing and ddr48∆ yeasts and observed a 50% decrease in recovery of ddr48∆ yeasts compared to wild-type yeasts. Loss of DDR48 function results in numerous negative effects in Histoplasma yeasts, highlighting its role as a key player in the global sensing and response to cellular stress by fungi.
We report the genome sequences of 14 cluster K mycobacteriophages isolated using Mycobacterium smegmatis mc²155 as host. Four are closely related to subcluster K1 phages, and 10 are members of subcluster K6. The phage genomes span considerable sequence diversity, including multiple types of integrases and integration sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.