Missense mutations in the presenilin 2 (PS-2) gene on chromosome 1 were sought by direct nucleotide sequence analysis of the open reading frame of 60 pedigrees with familial Alzheimer's disease (FAD). In the majority of these pedigrees, PS-1 and beta-amyloid precursor protein (beta APP) gene mutations had been excluded. While no additional PS-2 pathogenic mutations were detected, four silent nucleotide substitutions and alternative splicing of nucleotides 1338-1340 (Glu325) were observed. Analysis of additional members of a pedigree known to segregate a Met239Val mutation in PS-2 revealed that the age of onset of symptoms is highly variable (range 45-88 years). This variability is not attributable to differences in ApoE genotypes. These results suggest (i) that, in contrast to mutations in PS-1, mutations in PS-2 are a relatively rare cause of FAD; (ii) that other genetic or environmental factor modify the AD phenotype associated with PS-2 mutations; and (iii) that still other FAD susceptibility genes remain to be identified.
A familial form of Creutzfeldt-Jakob disease (CJD) is linked to the D178N/V129 prion protein (PrP) mutation. Tg(CJD) mice expressing the mouse homolog of this mutant PrP synthesize a misfolded form of the mutant protein, which is aggregated and protease resistant. These mice develop clinical and pathological features reminiscent of CJD, including motor dysfunction, memory impairment, cerebral PrP deposition, and gliosis. Tg(CJD) mice also display electroencephalographic abnormalities and severe alterations of sleep-wake patterns strikingly similar to those seen in a human patient carrying the D178N/V129 mutation. Neurons in these mice show swelling of the endoplasmic reticulum (ER) with intracellular retention of mutant PrP, suggesting that ER dysfunction could contribute to the pathology. These results establish a transgenic animal model of a genetic prion disease recapitulating cognitive, motor, and neurophysiological abnormalities of the human disorder. Tg(CJD) mice have the potential for giving greater insight into the spectrum of neuronal dysfunction in prion diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.