A sonochemical-based hydrosilylation method was employed to covalently attach a rhenium tricarbonyl phenanthroline complex to silicon(111). fac-Re(5-(p-Styrene)-phen)(CO)3Cl (5-(p-styrene)-phen = 5-(4-vinylphenyl)-1,10-phenanthroline) was reacted with hydrogen-terminated silicon(111) in an ultrasonic bath to generate a hybrid photoelectrode. Subsequent reaction with 1-hexene enabled functionalization of remaining atop Si sites. Attenuated total reflectance–Fourier transform infrared spectroscopy confirms attachment of the organometallic complex to silicon without degradation of the organometallic core, supporting hydrosilylation as a strategy for installing coordination complexes that retain their molecular integrity. Detection of Re(I) and nitrogen by X-ray photoelectron spectroscopy (XPS) further support immobilization of fac-Re(5-(p-styrene)-phen)(CO)3Cl. Cyclic voltammetry and electrochemical impedance spectroscopy under white light illumination indicate that fac-Re(5-(p-styrene)-phen)(CO)3Cl undergoes two electron reductions. Mott–Schottky analysis indicates that the flat band potential is 239 mV more positive for p-Si(111) co-functionalized with both fac-Re(5-(p-styrene)-phen)(CO)3Cl and 1-hexene than when functionalized with 1-hexene alone. XPS, ultraviolet photoelectron spectroscopy, and Mott–Schottky analysis show that functionalization with fac-Re(5-(p-styrene)-phen)(CO)3Cl and 1-hexene introduces a negative interfacial dipole, facilitating reductive photoelectrochemistry.
Photovoltages for hydrogen-terminated p-Si(111) in an acetonitrile electrolyte were quantified with methyl viologen [1,1′-(CH3)2-4,4′-bipyridinium](PF6)2, abbreviated MV2+, and [Ru(bpy)3](PF6)2, where bpy is 2,2′-bipyridine, that respectively undergo two and three one-electron transfer reductions. The reduction potentials, E°, of the two MV2+ reductions occurred at energies within the forbidden bandgap, while the three [Ru(bpy)3]2+ reductions occurred within the continuum of conduction band states. Bandgap illumination resulted in reduction that was more positive than that measured with a degenerately doped n+-Si demonstrative of a photovoltage, V ph, that increased in the order MV2+/+ (260 mV) < MV+/0 (400 mV) < Ru2+/+ (530 mV) ∼ Ru+/0 (540 mV) ∼ Ru0/– (550 mV). Pulsed 532 nm excitation generated electron–hole pairs whose dynamics were nearly constant under depletion conditions and increased markedly as the potential was raised or lowered. A long wavelength absorption feature assigned to conduction band electrons provided additional evidence for the presence of an inversion layer. Collectively, the data reveal that the most optimal photovoltage, as well as the longest electron–hole pair lifetime and the highest surface electron concentration, occurs when E° lies energetically within the unfilled conduction band states where an inversion layer is present. The bell-shaped dependence for electron–hole pair recombination with the surface potential was predicted by the time-honored SRH model, providing a clear indication that this interface provides access to all four bias conditions, i.e., accumulation, flat band, depletion, and inversion. The implications of these findings for photocatalysis applications and solar energy conversion are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.