In the past decades, cases of canine ocular onchocercosis have been reported worldwide, particularly in the United States and Europe. Onchocerca lupi, originally described from a wolf, has been implicated in some of these cases, and its zoonotic role has been hypothesized on the basis of the reexamination of two cases of human ocular onchocerciasis. In the present study, we describe, for the first time, the occurrence of O. lupi in the subconjunctival region of the human eye in a patient from Turkey. The nematode was identified as O. lupi based on its morphology and molecular phylogenetic analysis of partial cox1 and 12S ribosomal DNA genes. The results suggest that O. lupi should be considered in the differential diagnosis of other eye parasitic infections in humans. The role of dogs as natural hosts of O. lupi and the vectors of this zoonotic parasite need to be investigated.
Thelazia callipaeda, commonly known as the 'oriental eyeworm', has been recently reported in Italy and other European countries. The insect/s that act as intermediate hosts and details of larval development inside the vector remain unclear. In order to (1) demonstrate the species of fly that may act as vector/s for T. callipaeda in southern Italy (Site A) and China (Site B) and (2) describe the larval development of the nematode in the body of flies, 847 Phortica (Drosophilidae) flies were collected from the above two sites, each with a history of human and/or canine thelaziosis. Flies were identified as Phortica variegata (245 - site A) and Phortica okadai (602 - site B), experimentally infected by 1st-stage larvae (L1), kept at different temperatures and dissected daily until day 180 post-infection (p.i.). Dead flies from site A were subjected to specific polymerase chain reaction (PCR) assay to detect T. callipaeda. To demonstrate the role of Phortica as vectors of T. callipaeda, 3rd-stage larvae (L3) recovered from the proboscis of flies were deposited onto the cornea of the eyes of dogs and rabbits. Following dissection, 3 (2.9%) of P. variegata in site A were found to be infected by L3 in the proboscis on days +14, +21 and +53 p.i., compared with 26 (18.4%) of Phortica flies recorded as being positive by PCR. Sequences from positive PCR products were 99% identical to sequences of the corresponding species available in GenBank (AY207464). At site B, 106 (17.6%) of 602 dissected P. okadai were found to be infected by T. callipaeda larvae (different stages) and in total 62 L3 were recovered from the proboscis of 34 (5.6%) flies. The shortest time in which L3 were found was at day +14, +17, +19, and +50 p.i. respectively, depending on the environmental temperatures. Of 30 flies overwintered for 6 months, 6 L3 were detected at day +180 p.i. in 3 flies (10%). The biology of larval development was reconstructed on the basis of the dissection of 602 P. okadai-infected flies and the morphology of larval stages in the insect body described. The present work provides evidence that P. variegata and P. okadai act as vectors for T. callipaeda in southern Europe and in China, respectively. The phenomenon of overwintering is described here for the first time for T. callipaeda and discussed. Finally, the relationship between T. callipaeda and its fly vector is considered in light of disease prophylaxis and to model its dissemination into habitats and environments favourable to Phortica flies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.