Globally, the leading cause of death from cancer in women is infection with the human papillomavirus (HPV). This calls for imperative actions to explore anticancer drugs against this threatening viral infection, in which case, natural ingredients are presumed to be a promising source. Several studies show that plant-origin compounds such as allicin, apigenin, capsaicin, cyanidin, fisetin, genistein, laricitrin, naringenin, piperine, and syringetin have demonstrated therapeutic effects against several cancer types. In this study, the interaction mechanism of these compounds with HPV-18 E6 oncoprotein, that is known to downregulate tumor suppressor p53, was predicted using an in silico approach. Molecular docking simulations of natural ligands and E6 protein were performe, followed by chemical interaction analysis and 3D molecular visualization. Results indicated that fisetin is the best natural inhibitor as it has the lowest binding energy. It is highly recommended that the results of this study be used as a reference in designing anticancer drugs in vitro and in vivo.
Dengue is a major mosquito-borne disease that currently has no effective antiviral or vaccine available. Recently, Indonesia is one of the largest countries in the dengue-endemic region, with a total population of more than 250 million. In the present study, the antiviral activity of P. merkusii stem bark and cone were evaluated against dengue virus type-2 (DENV-2; NCBI accession number: KT012509) isolated from Surabaya, Indonesia. We revealed that P. merkusii stem bark and cone inhibited DENV-2 in Vero cells (originally from African green monkey kidney) with IC50= 140.63 μg/mL and 73.78 μg/mL, CC50= 89.65 μg/mL and 249.5 μg/mL, SI= 0.64 and 3.38, respectively. The findings presented here suggest that P. merkusii stem bark and cone exerts potent antiviral activity against DENV-2. Hence, P. merkusii stem bark and cone are potent to inhibit DENV-2 and should be considered for in vivo evaluation in the development of an effective antiviral compound against DENV-2.
Microplastic pollution is an emerging topic in environmental science. However, information about its prevalence in the freshwater ecosystems is still scarce. This study quantified and identified microplastic form and polymer types from surface sediments of the Molawin River. Sediment samples were collected from the upstream, midstream, and downstream stations of the river. Isolation of microplastics was performed through a modified granulometric approach, density separation, and filtration. Stereoscopic microscopy and Fourier-transform infrared spectroscopy (FTIR) were conducted to quantify and describe microplastics and identify the polymer types based on the infrared spectrum of absorption, respectively. The highest concentration of microplastics was found in the downstream station, with an average number of 97±12 items/100 g and 47.33±11.39 items/100 g sediment dry weight in the bank and channel, respectively. The isolated microplastics were dominated by ≥100 to ≤200 μm size range. Based on stereoscopic microscopy, microfragments and microfibers were the most common microplastic type, while polyethylene (PE) and polypropylene (PP) were the polymer types identified based on FTIR analyses. This study revealed the presence of microplastics and confirmed the microplastics polymers present in the Molawin Watershed of Makiling Forest Reserve.
Acquired immune deficiency syndrome (AIDS) has been identified from US patients since 1981. AIDS is caused by infection with the human immunodeficiency virus type 1 (HIV-1) which is a retrovirus. HIV-1 gp120 can be recognized by the immune system because it is located outside the virion. The conserved region is identified in gp120, and it is recognized by an immune cell which then initiates specific immune responses, viral mutation escape, and increase vaccine protection coverage, a benefit derived from the conserved region-based vaccine design. However, previous researchers have little knowledge on this conserved region as a target for vaccine design. This paper explains how the conserved region of gp120 HIV-1 is a major target for vaccine design through a bioinformatics approach. The conserved region from gp120 was explored as a vaccine design target with a bioinformatics tool that consists of B-cell epitope mapping, vaccine properties, molecular docking, and dynamic simulation. The peptide vaccine candidate of B5 with the gp120 HIV-1 conserved region was found to provoke B-cell activation through a direct pathway, produce specific antibody, and increase protection from multi-strain viral infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.