Previously we demonstrated that the biologically active metabolites of 17β-oestradiol, 2-hydroxyoestradiol (2-OHE ) and 4-hydroxyoestradiol (4-OHE ), stimulate pregnancy-specific proliferation of uterine artery endothelial cells derived from pregnant (P-UAECs), but not non-pregnant ewes. However, unlike 17β-oestradiol, which induces proliferation via oestrogen receptor-β (ER-β), the catecholoestradiols mediate P-UAEC proliferation via β-adrenoceptors (β-AR) and independently of classic oestrogen receptors. Herein, we aim to further elucidate the signalling mechanisms involved in proliferation induced by catecholoestradiols in P-UAECs. P-UAECs were treated with 2-OHE and 4-OHE for 0, 0.25, 0.5, 1, 2, 4, 12 and 24 h, to analyse activation of mitogen activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase (PI3K)-AKT. Specific inhibitors for ERK1/2 MAPK (PD98059), p38 MAPK (SB203580), JNK MAPK (SP600125), or PI3K (LY294002) were used to determine the involvement of individual kinases in agonist-induced P-UAEC proliferation. 2-OHE and 4-OHE stimulated biphasic phosphorylation of ERK1/2, slow p38 and JNK phosphorylation over time, and rapid monophasic AKT phosphorylation. Furthermore, ERK1/2, p38 and JNK MAPKs, but not PI3K, were individually necessary for catecholoestradiol-induced proliferation. In addition, when comparing the signalling mechanisms of the catecholoestradiols, to 17β-oestradiol and catecholamines, we observed that convergent MAPKs signalling pathways facilitate P-UAEC proliferation induced by all of these hormones. Thus, all three members of the MAPK family mediate the mitogenic effects of catecholoestradiols in the endothelium during pregnancy. Furthermore, the convergent signalling of MAPKs involved in catecholoestradiol-, 17β-oestradiol- and catecholamine-induced endothelial cell proliferation may be indicative of unappreciated evolutionary functional redundancy to facilitate angiogenesis and ensure maintenance of uterine blood flow during pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.