The Ras-extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway appears to be important for the development, maintenance, aging, and pathology of mammalian skeletal muscle. Yet no gene targeting of Erk1/2 in muscle fibers in vivo has been reported to date. We combined a germ line Erk1 mutation with Cre-loxP Erk2 inactivation in skeletal muscle to produce, for the first time, mice lacking ERK1/2 selectively in skeletal myofibers. Animals lacking muscle ERK1/2 displayed stunted postnatal growth, muscle weakness, and a shorter life span. Their muscles examined in this study, sternomastoid and tibialis anterior, displayed fragmented neuromuscular synapses and a mixture of modest fiber atrophy and loss but failed to show major changes in fiber type composition or absence of cell surface dystrophin. Whereas the lack of only ERK1 had no effects on the phenotypes studied, the lack of myofiber ERK2 explained synaptic fragmentation in the sternomastoid but not the tibialis anterior and a decrease in the expression of the acetylcholine receptor (AChR) epsilon subunit gene mRNA in both muscles. A reduction in AChR protein was documented in line with the above mRNA results. Evidence of partial denervation was found in the sternomastoid but not the tibialis anterior. Thus, myofiber ERK1/2 are differentially required for the maintenance of myofibers and neuromuscular synapses in adult mice. Mitogen-activated protein kinases (MAPKs) are components of intracellular signaling modules that control a myriad of cellular processes. MAPK modules consist of 3 core protein kinase components. The most downstream is the actual MAPK, an S/T kinase that phosphorylates the transcription factors, cytoskeletal elements, or other kinases that are the targets of regulation by signaling cascades started at the cell surface. A MAPK is activated by an upstream MAPK kinase (MAP2K), which, in turn, is activated by a MAP2K kinase (MAP3K). MAP3Ks are usually at the receiving end of signals derived from small, monomeric GTPases such as the Ras family or by other more intricate mechanisms (1). In mammalian cells, the prototypical MAPK module is composed of the MAPKs extracellular signal-regulated kinases 1 and 2 (ERK1/2), the MAP2Ks MEK1/2, and the MAP3K Raf. ERK1/2 regulate normal cellular responses to multiple growth factors and cytokines in proliferation, differentiation, and apoptosis (2, 3).Multiple studies suggest an important role for the Ras-ERK1/2 pathway in the development, normal maintenance, aging, and pathology of mammalian skeletal muscle. Thus, ERK1/2 activity has both stimulatory and inhibitory roles in the differentiation of cultured skeletal myotubes that vary with the stage of this protracted process (4-8). ERK1/2 have been implicated in the maintenance of adult skeletal muscle mass (9) and, seemingly paradoxically, in the control of both the fast-twitch (10) and the slow-twitch (11) fiber type phenotypes. Alterations in levels of ERK1/2 activity in aging rodent muscle correlate with sarcopenia (12), the loss of muscle mass and ...
Extremity amputation or traumatic injury can often lead to the formation of heterotopic ossification (HO). Studies to induce HO in rat muscle using cell-based gene therapy show that this process appears to be location dependent. In the present study, HO was induced in mice and rats through injection of immunologically matched cells transduced with either a replication-defective adenovirus possessing bone morphogenetic protein 2 (BMP2) or an empty adenovirus vector (control). Injection in rat near the skeletal bone resulted in HO, whereas cells injected into the same muscle group but distal from the bone did not result in bone formation. When cells were injected in the same limb at both locations at the same time, HO was formed at both sites. Characterization of the bone formation in rats versus mice demonstrated that different sources of osteogenic progenitors were involved, which may account for the location dependent bone formation observed in the rat. Further experimentation has shown that a potential reason for this difference may be the inability of rat to activate matrix metalloproteinase 9 (MMP9), an essential protease in mice necessary for recruitment of progenitors. Inhibition of active MMP9 in mice led to a significant decrease in HO. The studies reported here provide insight into the mechanisms and pathways leading to bone formation in different animals and species. It appears that not all animal models are appropriate for testing HO therapies, and our studies also challenge the conventional wisdom that larger animal models are better for testing treatments affecting bone.
Gene therapy approaches have been difficult to implement due to pre-existing immunity against the virus used for delivery. To circumvent this problem, a cell-based approach was developed that avoided the use of free virus within the animal. However, even cells transduced in vitro with E1- to E3-deleted adenovirus encoding bone morphogenetic protein 2 (AdBMP2) resulted in the production of virus-neutralizing antibodies in mice. Furthermore, when mice received an intramuscular injection of nonencoding adenovirus (AdEmpty)-transduced cells, AdBMP2-transduced cells were unable to launch bone formation when an intramuscular injection of these BMP2-producing cells was delivered 1 week later. This phenomenon was not observed in NOD/SCID mice, and could be overcome in C57BL/6 mice by encapsulating the adenovirus-transduced cells in a nondegradable hydrogel poly(ethylene glycol) diacrylate (PEGDA). Data collectively suggest that PEGDA hydrogel encapsulation of AdBMP2-transduced cells prevents pre-existing immunity from suppressing BMP2-induced bone formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.