Summary Resistance to gastrointestinal nematodes has previously been shown to be a moderately heritable trait in some breeds of sheep, but the mechanisms of resistance are not well understood. Selection for resistance currently relies upon faecal egg counts (FEC), blood packed cell volumes and FAMACHA visual indicator scores of anaemia. Identifying genomic markers associated with disease resistance would potentially improve the selection process and provide a more reliable means of classifying and understanding the biology behind resistant and susceptible sheep. A GWAS was conducted to identify possible genetic loci associated with resistance to Haemonchus contortus in Katahdin sheep. Forty animals were selected from the top and bottom 10% of estimated breeding values for FEC from a total pool of 641 sires and ram lambs. Samples were genotyped using Applied Biosystems™ Axiom™ Ovine Genotyping Array (50K) consisting of 51 572 SNPs. Following quality control, 46 268 SNPs were included in subsequent analyses. Analyses were conducted using a linear regression model in plink v1.90 and a single‐locus mixed model in snp and variation suite. Genome‐wide significance was determined by a Bonferroni correction for multiple testing. Using linear regression, loci on chromosomes 2, 3, 16, 23 and 24 were significantly associated at the genome level with FEC estimated breeding values, and we identified a region on chromosome 2 that was significant using both statistical analyses. We suggest a potential role for the gene DIS3L2 for gastrointestinal nematode resistance in Katahdin sheep, although further research is needed to validate these findings.
The ability of livestock to reproduce efficiently is critical to the sustainability of animal agriculture. Antral follicle count (AFC) and reproductive tract scores (RTS) can be used to estimate fertility in beef heifers, but the genetic mechanisms influencing variation in these measures are not well understood. Two genome-wide association studies (GWAS) were conducted to identify the significant loci associated with these traits. In total, 293 crossbred beef heifers were genotyped on the Bovine GGP 50K chip and genotypes were imputed to 836,121 markers. A GWAS was performed with the AFC phenotype for 217 heifers with a multi-locus mixed model, conducted using the year, age at time of sampling and principal component analysis groupings as the covariates. The RTS GWAS was performed with 289 heifers using an additive correlation/trend test comparing prepubertal to pubertal heifers. The loci on chromosomes 2, 3 and 23 were significant in the AFC GWAS and the loci on chromosomes 2, 8, 10 and 11 were significant in the RTS GWAS. The significant region on chromosome 2 was similar between both analyses. These regions contained genes associated with cell proliferation, transcription, apoptosis and development. This study proposes candidate genes for beef cattle fertility, although future research is needed to elucidate the precise mechanisms.
Gastrointestinal nematodes (GIN) pose a severe threat to sheep production worldwide. Anthelmintic drug resistance coupled with growing concern regarding potential environmental effects of drug use have demonstrated the necessity of implementing other methods of GIN control. The aim of this study was to test for genetic variants associated with resistance or susceptibility to GIN in Katahdin sheep to improve the current understanding of the genetic mechanisms responsible for host response to GIN. Linear regression and case-control genome-wide association studies were conducted with high-density genotype data and cube-root transformed weaning fecal egg counts (tFEC) of 583 Katahdin sheep. The case-control GWAS identified two significant SNPs (P-values 1.49e-08 to 1.01e-08) within introns of the gene adhesion G protein-coupled receptor B3 (ADGRB3) associated with lower fecal egg counts. With linear regression, four significant SNPs (P-values 7.82e-08 to 3.34e-08) were identified within the first intron of the gene EGF-like repeats and discoidin domains 3 (EDIL3). These identified SNPs were in very high linkage disequilibrium (r2 of 0.996–1), and animals with alternate homozygous genotypes had significantly higher median weaning tFEC phenotypes compared to all other genotypes. Significant SNPs were queried through public databases to identify putative transcription factor binding site (TFBS) and potential lncRNA differences between reference and alternate alleles. Changes in TFBS were predicted at two SNPs, and one significant SNP was found to be within a predicted lncRNA sequence with greater than 90% similarity to a known lncRNA in the bovine genome. The gene EDIL3 has been described in other species for its roles in the inhibition and resolution of inflammation. Potential changes of EDIL3 expression mediated through lncRNA expression and/or transcription factor binding may impact the overall immune response and reduce the ability of Katahdin sheep to control GIN infection. This study lays the foundation for further research of EDIL3 and ADGRB3 towards understanding genetic mechanisms of susceptibility to GIN, and suggests these SNPs may contribute to genetic strategies for improving parasite resistance traits in sheep.
Mycoplasma ovipneumoniae contributes to polymicrobial pneumonia in domestic sheep. Elucidation of host genetic influences of M. ovipneumoniae nasal detection has the potential to reduce the incidence of polymicrobial pneumonia in sheep through implementation of selective breeding strategies. Nasal mucosal secretions were collected from 647 sheep from a large US sheep flock. Ewes of three breeds (Polypay n = 222, Rambouillet n = 321, and Suffolk n = 104) ranging in age from one to seven years, were sampled at three different times in the production cycle (February, April, and September/October) over four years (2015 to 2018). The presence and DNA copy number of M. ovipneumoniae was determined using a newly developed species-specific qPCR. Breed (P<0.001), age (P<0.024), sampling time (P<0.001), and year (P<0.001) of collection affected log10 transformed M. ovipneumoniae DNA copy number, where Rambouillet had the lowest (P<0.0001) compared with both Polypay and Suffolk demonstrating a possible genetic component to detection. Samples from yearlings, April, and 2018 had the highest (P<0.046) detected DNA copy number mean. Sheep genomic DNA was genotyped with the Illumina OvineHD BeadChip. Principal component analysis identified most of the variation in the dataset was associated with breed. Therefore, genome wide association analysis was conducted with a mixed model (EMMAX), with principal components 1 to 6 as fixed and a kinship matrix as random effects. Genome-wide significant (P<9x10-8) SNPs were identified on chromosomes 6 and 7 in the all-breed analysis. Individual breed analysis had genome-wide significant (P<9x10-8) SNPs on chromosomes 3, 4, 7, 9, 10, 15, 17, and 22. Annotated genes near these SNPs are part of immune (ANAPC7, CUL5, TMEM229B, PTPN13), gene translation (PIWIL4), and chromatin organization (KDM2B) pathways. Immune genes are expected to have increased expression when leukocytes encounter M. ovipneumoniae which would lead to chromatin reorganization. Work is underway to narrow the range of these associated regions to identify the underlying causal mutations.
Functional annotation of the bovine genome was performed by characterizing the spectrum of RNA transcription using a multi-omics approach, combining long- and short-read transcript sequencing and orthogonal data to identify promoters and enhancers and to determine boundaries of open chromatin. A total number of 171,985 unique transcripts (50% protein-coding) representing 35,150 unique genes (64% protein-coding) were identified across tissues. Among them, 159,033 transcripts (92% of the total) were structurally validated by independent datasets such as PacBio Iso-seq, ONT-seq, de novo assembled transcripts from RNA-seq, or Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive independent data from different technologies such as WTTS-seq, RAMPAGE, ChIP-seq, and ATAC-seq. A large proportion of identified transcripts (69%) were novel, of which 87% were produced by known genes and 13% by novel genes. A median of two 5' untranslated regions was detected per gene, an increase from Ensembl and NCBI annotations (single). Around 50% of protein-coding genes in each tissue were bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes that functioned as non-coding genes in fetal tissues, but as protein-coding genes in adult tissues. Our new bovine genome annotation extended more than 11,000 known gene borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was integrated with publicly available QTL data to study tissue-tissue interconnection involved in different traits and construct the first bovine trait similarity network. These validated results show significant improvement over current bovine genome annotations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.