Diffuse midline glioma (DMG) is an incurable malignancy with the highest mortality rate among pediatric brain tumors. While radiotherapy and chemotherapy are the most common treatments, these modalities have limited promise. Due to their diffuse nature in critical areas of the brain, the prognosis of DMG remains dismal. DMGs are characterized by unique phenotypic heterogeneity and histological features. Mutations of H3K27M, TP53, and ACVR1 drive DMG tumorigenesis. Histological artifacts include pseudopalisading necrosis and vascular endothelial proliferation. Mouse models that recapitulate human DMG have been used to study key driver mutations and the tumor microenvironment. DMG consists of a largely immunologically cold tumor microenvironment that lacks immune cell infiltration, immunosuppressive factors, and immune surveillance. While tumor-associated macrophages are the most abundant immune cell population, there is reduced T lymphocyte infiltration. Immunotherapies can stimulate the immune system to find, attack, and eliminate cancer cells. However, it is critical to understand the immune microenvironment of DMG before designing immunotherapies since differences in the microenvironment influence treatment efficacy. To this end, our review aims to overview the immune microenvironment of DMG, discuss emerging insights about the immune landscape that drives disease pathophysiology, and present recent findings and new opportunities for therapeutic discovery.
Background: Fluorescence-guided surgery (FGS) using 5-aminolevulic acid (5-ALA) is a widely used strategy for delineating tumor tissue from surrounding brain intraoperatively during high-grade glioma (HGG) resection. 5-ALA reaches peak plasma levels ~4 h after oral administration and is currently approved by the FDA for use 2–4 h prior to induction to anesthesia.Objective: To demonstrate that there is adequate intraoperative fluorescence in cases undergoing surgery more than 4 h after 5-ALA administration and compare survival and radiological recurrence to previous data.Methods: Retrospective analysis of HGG patients undergoing FGS more than 4 h after 5-ALA administration was performed at two institutions. Clinical, operative, and radiographic pre- and post-operative characteristics are presented.Results: Sixteen patients were identified, 6 of them female (37.5%), with mean (SD) age of 59.3 ± 11.5 years. Preoperative mean modified Rankin score (mRS) was 2 ± 1. All patients were dosed with 20 mg/kg 5-ALA the morning of surgery. Mean time to anesthesia induction was 425 ± 334 min. All cases had adequate intraoperative fluorescence. Eloquent cortex was involved in 12 cases (75%), and 13 cases (81.3%) had residual contrast enhancement on postoperative MRI. Mean progression-free survival was 5 ± 3 months. In the study period, 6 patients died (37.5%), mean mRS was 2.3 ± 1.3, Karnofsky score 71.9 ± 22.1, and NIHSS 3.9 ± 2.4.Conclusion: Here we demonstrate that 5-ALA-guided HGG resection can be performed safely more than 4 h after administration, with clinical results largely similar to previous reports. Relaxation of timing restrictions could improve procedure workflow in busy neurosurgical centers, without additional risk to patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.