Fulvestrant (Faslodex) is administered by intramuscular injection and is converted into ketone, sulfate, sulfone and glucuronide metabolites. Glucuronidation, catalyzed by 18 members of the UDP-glucuronosyltransferase (UGT) enzyme family, plays a major role in the elimination of natural estrogens. The present study was aimed at identifying and characterizing human UGT enzymes involved in the glucuronidation of this antiestrogen as well as other synthetic estrogen derivatives with aliphatic chains on the E 2 molecule. In contrast to E 2 , which is conjugated by UGT1A1, -1A3, -1A8, -1A10, and -2B7, fulvestrant is glucuronidated by UGT1A1, -1A3, -1A4, and -1A8. The four UGT1A-fulvestrant conjugating enzymes glucuronidate this substrate at position 3, whereas only UGT1A8 also produces fulvestrant-17-glucuronide. For E 2 , only UGT1A3 and UGT2B7 are capable to conjugate at 17-hydroxyposition. These observations indicate that addition of an aliphatic chain to the E 2 molecule modifies the specificity of the UGT enzymes toward the C 18 molecules. To further investigate the specificity of these enzymes, a series of E 2 derivatives with aliphatic or phenyl chains at position 2, 7␣, and 11 was also tested for its conjugation with human UGT enzymes. It was observed that, in addition to UGT1A3, UGT1A1 and UGT1A8 also played important roles for the glucuronidation of these compounds. This suggests that the basic structure of E 2 is one of the major determinants for the glucuronidation catalyzed by this group of enzymes. Considering the high level of UGT1A3 and -1A4 expression in the gastrointestinal tract and mammary gland, our results suggest that fulvestrant can be inactivated both in intestine and in its target tissue.
A sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed for the determination of carbamazepine in microgram quantities of crustacean Thamnocephalus platyurus and the algae Pseudokirchneriella subcapitata at the ng L(-1) level. This fully validated method applied to a bioaccumulation study was found suitable for the detection of carbamazepine in small aquatic tissues.
Background
Mechanisms underlying the associations between changes in the urban environment and changes in health-related outcomes are complex and their study requires specific approaches. We describe the protocol of the interdisciplinary UrbASanté study, which aims to explore how urban interventions can modify environmental exposures (built, social, and food environments; air quality; noise), health-related behaviors, and self-reported health using a natural experiment approach.
Methods
The study is based on a natural experiment design using a before/after protocol with a control group to assess changes in environmental exposures, health-risk behaviors, and self-reported health outcomes of a resident adult population before and after the implementation of a time series of urban interventions in four contiguous neighborhoods in Paris (France). The changes in environmental exposures, health-related behaviors, and self-reported health outcomes of a resident adult population will be concurrently monitored in both intervention and control areas. We will develop a mixed-method framework combining substantial fieldwork with quantitative and qualitative analytical approaches. This study will make use of (i) data relating to exposures and health-related outcomes among all participants and in subsamples and (ii) interviews with residents regarding their perceptions of their neighborhoods and with key stakeholders regarding the urban change processing, and (iii) existing geodatabases and field observations to characterize the built, social, and food environments. The data collected will be analyzed with a focus on interrelationships between environmental exposures and health-related outcomes using appropriate approaches (e.g., interrupted time series, difference–in-differences method).
Discussion
Relying on a natural experiment approach, the research will provide new insights regarding issues such as close collaboration with urban/local stakeholders, recruitment and follow-up of participants, identification of control and intervention areas, timing of the planned urban interventions, and comparison of subjective and objective measurements. Through the collaborative work of a consortium ensuring complementarity between researchers from different disciplines and stakeholders, the UrbASanté study will provide evidence-based guidance for designing future urban planning and public health policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.