We propose a 'learned' iterative solver for the Helmholtz equation, by combining traditional Krylov-based solvers with machine learning. The method is, in principle, able to circumvent the shortcomings of classical iterative solvers, and has clear advantages over purely data-driven approaches. We demonstrate the effectiveness of this approach under a 1.5-D assumption, when adequate a priori information about the velocity distribution is known.
We study a reconstruction algorithm for the general inverse scattering problem based on the estimate of not only medium properties, as in more conventional approaches, but also wavefields propagating inside the computational domain. This extended set of unknowns is justified as a way to prevent local minimum stagnation, which is a common issue for standard methods. At each iteration of the algorithm, (i) the model parameters are obtained by solution of a convex problem, formulated from a special bilinear relationship of the data with respect to properties and wavefields (where the wavefield is kept fixed), and (ii) a better estimate of the wavefield is calculated, based on the previously reconstructed properties. The resulting scheme is computationally convenient since step (i) can greatly benefit from parallelization and the wavefield update (ii) requires modeling only in the known background model, which can be sped up considerably by factorization-based direct methods. The inversion method is successfully tested on synthetic elastic datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.