The surface-exposed lipids of Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium kansasii, Mycobacterium gastri, Mycobacterium smegmatis, and Mycobacterium aurum were isolated by gentle mechanical treatment of cells with glass beads. Analysis of the exposed lipids demonstrated a selective location of classes of ubiquitous lipids on the surfaces of mycobacteria. While phosphatidylethanolamine and phosphatidylinositol mannosides were exposed in all the species examined, dimycoloyl trehalose (''cord factor'') was identified in the surface components of M. aurum only. Furthermore, monomycoloyl trehaloses and triacylglycerides were identified in the surface-exposed lipids of M. avium and M. smegmatis but not in those of the other mycobacterial species examined. The species-and type-species specific lipids were present on the mycobacterial cell surface: phenolic glycolipids, dimycocerosates of phthiocerols, and lipooligosaccharides were identified in the surface-exposed materials of M. tuberculosis (Canetti), M. kansasii, and M. gastri, whereas glycopeptidolipids were identified in the outermost lipid constituents of M. avium and M. smegmatis. This difference in the surface exposure of lipids of various mycobacterial species may reflect differences in their cell envelope organizations. Brief treatments of M. tuberculosis with Tween 80 prior to the use of glass beads led to erosion of regions of the capsule to expose gradually both cord factor and other lipids on the cell surface of the tubercle bacillus, demonstrating that the latter lipids are buried more deeply in the cell envelope and leading to the proposal of a scheme for the location of the capsular lipids of the tubercle bacillus.
We studied the outermost constituents of the cell envelopes, which are involved in the interaction between the bacilli and the host cells, of five pathogenic and non-pathogenic mycobacterial species for comparison with those we have previously characterized from M. tuberculosis. The extracellular materials (ECMs) were isolated by ethanol precipitation and compared to the surface-exposed materials (SXMs) extracted by mechanical means. The materials from both sources were composed almost exclusively of polysaccharides and proteins. Two groups of mycobacteria were clearly distinguishable. The first group comprised the pathogenic species M. kansasii which produced large amounts of ECM, the glycosyl composition of which was similar to that of the SXM. The second group comprised M. avium and the nonpathogenic strains of M. gastri, M. phlei and M. smegmatis which produced small amounts of ECM. This latter group could be subdivided into those which produced carbohydrate-rich ECM (M. avium and M. gastrr') and those forming protein-rich ECM (M. phlei and M. smegmatis), a classification that correlated with the difference in the growth rate of the two subgroups. The glycosyl composition of the ECM of a given species was qualitatively similar to that of the SXM, except for M. avium and M. phlei whose S X M were devoid of arabinose. In addition to glucose, mannose and arabinose, xylose was detected in the hydrolysis products of the ECM and SXM of M. smegmatis, the SXM of M. phlei and the ECM of some batches of M. avium. The polysaccharide constituents of the ECM and S X M of the different mycobacteria were purified by anion-exchange and gel-filtration chromatography; all were found to be neutral compounds devoid of acyl substituents. The extracellular polysaccharides consisted of high-molecular-mass glycogen-like glucans, arabinomannans and mannans, structurally similar to the corresponding substances previously characterized from the capsule of M. tuberculosis. The same types of polysaccharides were characterized from the S X M of all the strains, except M. avium and M. phlei which were devoid of arabinomannans. This study questions the unique and universal representation of the mycobacterial cell envelope and the existence of the so-called acidic polysaccharide-rich outer layer.i
Mycobacterium abscessus and Mycobacterium chelonae, two members of the Mycobacterium fortuitum complex, contain five major glycolipids. A combination of NMR spectroscopy, fast atom bombardment mass spectrometry and chemical degradation was used to elucidate their structures. All the compounds belong to the family of glycopeptidolipids. A 6-deoxy-a-~-talosyl unit, which may bear one or two acetyl groups, invariably occupies the site of glycosylation on the threonine residue in the various compounds. A 3,4-di-O-methyl-or 2,3,4-tri-O-methyl-a-~-rhamnosyl unit modifies the alaninol end of the diglycosylated molecules. Both species also contain a multiglycosylated compound consisting of a-L-rhamnosyl-(I -+ 2)-3,4-di-O-methyl-a-~-rhamnosyl linked to alaninol, which belongs to the class of new variants of glycopeptidolipids recently described. Using an ELISA, the latter glycolipid as well as the diglycosylated ones (not previously reported to be antigenic), were shown to react with the serum raised against the whole lipid antigens of M. chelonae. A comparative serologic study of the native and chemically modified glycopeptidolipid antigens allowed the identification of their epitope as the 3,4-di-O-methyl-a-~-rhamnosyl residue. Similar experiments conducted on the glycopeptidolipids isolated from the serologically cross-reacting species M. peregrinum led to the conclusion that the epitope identified in M. chelonae and M. abscessus was involved in the cross-reactions and demonstrated the existence of a second haptenic moiety in the glycolipids of M. peregrinum, the 3-O-methyl-a-~-rhamnosyl unit. In addition to this latter non-shared epitope, the recently described sulfated glycopeptidolipid antigen of M. peregrinum did not react with the M. chelonae serum, thus further explaining the difference in the seroreactivity within the complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.