BACKGROUND: We developed MTH1 inhibitors (MTH1i) TH588 and TH1579 showing broad anti-cancer activity, while structurally distinct MTH1i fail to kill cancer cells. Here, we describe a new role of MTH1 in mitosis and the detailed mechanism of action of TH1579 (karonudib) and other structurally distinct MTH1i. MATERIALS AND METHODS: Cancer cell lines or zebrafish embryos were treated with MTH1i or siRNA targeting MTH1 and analysed primarily by live cell and immunofluorescence microscopy, survival assays, DNA fibre or COMET assays. MTH1 and tubulin interactions were analysed in vitro using co-immunoprecipitation and tubulin polymerisation assays. RESULTS: Here, we describe a mitotic role for the MTH1 protein, which binds to tubulin, is required for microtubule polymerisation, correct spindle assembly, mitosis progression and suppression reactive oxygen species (ROS) generation in mitosis. Potent MTH1i display differential abilities to break the MTH1-tubulin interaction and cause mitotic arrest, demonstrating 8-oxodGTPase and mitotic function of MTH1 are mechanistically distinct. TH588 and TH1579 have more profound effect on mitotic arrest than other MTH1i explained by additional direct inhibition of tubulin polymerisation. MTH1i only inhibiting 8-oxodGTPase activity synergize with mitotic poisons. CONCLUSIONS: Efficient MTH1 have a dual mechanism of action: inhibiting mitosis (to generate ROS) and promoting 8-oxodGTP incorporation into DNA during mitotic replication, dependent on ROS generation. Direct inhibition of tubulin polymerisation of TH588 and TH1579 increase their ability to arrest cells and generate ROS in mitosis. Furthermore, non-cytotoxic MTH1 can become effective and increase incorporation of oxidised nucleotides into DNA when combined with sub-therapeutic concentrations of mitotic inhibitors or challenged directly by 8-oxodGTP.
Altered expression of the multifunctional protein WRAP53β (WD40 encoding RNA Antisense to p53), which targets repair factors to DNA double-strand breaks and factors involved in telomere elongation to Cajal bodies, is linked to carcinogenesis. While loss of WRAP53β function has been shown to disrupt processes regulated by this protein, the consequences of its overexpression remain unclear. Here we demonstrate that overexpression of WRAP53β disrupts the formation of and impairs the localization of coilin to Cajal bodies. At the same time, the function of this protein in the repair of DNA double-strand breaks is enhanced. Following irradiation, cells overexpressing WRAP53β exhibit more rapid clearance of phospho-histone H2AX (γH2AX), and more efficient homologous recombination and non-homologous end-joining, in association with fewer DNA breaks. Moreover, in these cells the ubiquitylation of damaged chromatin, which is known to facilitate the recruitment of repair factors and subsequent repair, is elevated. Knockdown of the ubiquitin ligase involved, ring-finger protein 8 (RNF8), which is recruited to DNA breaks by WRAP53β, attenuated this effect, suggesting that overexpression of WRAP53β leads to more rapid repair, as well as improved cell survival, by enhancing RNF8-mediated ubiquitylation at DNA breaks. Our present findings indicate that WRAP53β and RNF8 are rate-limiting factors in the repair of DNA double-strand breaks and raise the possibility that upregulation of WRAP53β may contribute to genomic stability in and survival of cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.