CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses were prepared via an optimized sol–gel method. The current investigation was focused on producing novel zinc based calcium phosphoborosilicate glasses and to evaluate their mechanical, rheological, and biocompatible properties. The morphology and composition of these glasses were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The particle size, mechanical and flexural strength was also determined. Furthermore, the zeta potential of all the glasses were determined to estimate their flocculation tendency. The thermal analysis and weight loss measurements were carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) respectively. For assessing the in-vitro bioactive character of synthesized glasses, the ability for apatite formation on their surface upon their immersion in simulated body fluid (SBF) was checked using SEM and pH measurements. MTS assay cytotoxicity assay and live-dead cell viability test were conducted on J774A.1 cells murine macrophage cells for different glass concentrations.
Brucella abortus has been shown to produce two siderophores: 2,3-dihydroxybenzoic acid (2,3-DHBA) and brucebactin. Previous studies on Brucella have shown that 2,3-DHBA is associated with erythritol utilization and virulence in pregnant ruminants. The biosynthetic pathway and role of brucebactin are not known and the only gene shown to be involved so far is entF. Using cre-lox methodology, an entF mutant was created in wild-type B. abortus 2308. Compared with the wild-type strain, the ΔentF strain showed significant growth inhibition in iron minimal media that became exacerbated in the presence of an iron chelator. For the first time, we have demonstrated the death of the ΔentF strain under iron-limiting conditions in the presence of erythritol. Addition of FeCl(3) restored the growth of the ΔentF strain, suggesting a significant role in iron acquisition. Further, complementation of the ΔentF strain using a plasmid containing an entF gene suggested the absence of any polar effects. In contrast, there was no significant difference in survival and growth between the ΔentF and wild-type strains grown in the murine macrophage cell line J774A.1, suggesting that an alternate iron acquisition pathway is present in Brucella when grown intracellulary.
The activity of antituberculosis drugs (streptomycin sulfate, isoniazid, pyrazinamid, and clarithromycin) embedded in biodegradable nanofibers against Mycobacterium avium has been studied by broth dilution assay and by agar plate assay. These drugs have also been embedded in electrospun polyvinyl alcohol (PVA), polyethylene oxide (PEO), and polycaprolacton (PCL) nanofibers to design a new single tablet containing first-line antituberculosis drugs. Our results show that antituberculosis drugs are active at tiny amounts (up to 300 µg mL(-1) of solvent). However, within polymer matrices, high amounts of drugs are required to avoid unwanted weak interactions within PEO and PCL matrices. The successful design of a single tablet containing required amounts of antituberculosis drugs is essential for the full treatment of tuberculosis in patients with HIV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.