Understanding predator–prey interactions has a pivotal role in biological control programs. This study evaluated the functional response of three larval instars of the green lacewing, Chrysoperla carnea (Stephens), preying upon eggs and first instar larvae of the cotton bollworm, Helicoverpa armigera Hübner. The first and second instar larvae of C. carnea exhibited type II functional responses against both prey stages. However, the third instar larvae of C. carnea showed a type II functional response to the first instar larvae of H. armigera, but a type III functional response to the eggs. For the first instar larvae of C. carnea, the attack rate on H. armigera eggs was significantly higher than that on the larvae, whereas the attack rate of the second instar C. carnea on H. armigera larvae was significantly higher than that on the eggs. For the third instar larvae of C. carnea, the attack rate on the larvae was 1.015 ± 0.278/h, and the attack coefficient on the eggs was 0.036 ± 0.005. The handling times of the third instar larvae on larvae and eggs were 0.087 ± 0.009 and 0.071 ± 0.001 h, respectively. The highest predation rate was found for the third instar larvae of C. carnea on H. armigera eggs. Results of this study revealed that the larvae of C. carnea, especially the third instar, had a good predation potential in controlling H. armigera eggs and larvae. However, for a comprehensive estimation of the bio‐control abilities of C. carnea toward H. armigera, further field‐based studies are needed.
The diamondback moth, Plutella xylostella (L.), has become the most destructive insect pest of cruciferous plants, such as B. napus throughout the world including Iran. In this study, the induction of resistance was activated in oilseed rape plants (Brassica napus L.) using foliar application of jasmonic acid (JA) and mealy cabbage aphid either individually or in combination against diamondback moth. Induced resistance by inducers significantly reduced the population growth parameters, as well as the survival rate of immature P. xylostella. Also, the nutritional indices of P. xylostella were studied to evaluate the potential impact of induced resistance on the insect feeding behavior. The values of the efficiency of conversion of ingested food, the efficiency of conversion of digested food, relative consumption rate, and relative growth rate of P. xylostella on JA-treated plants were significantly reduced compared to control. These are because glucosinolates and proteinase inhibitors are induced following treatment of plants. Also, we found a significantly higher glucose oxidase activity in the salivary gland extracts of larvae fed on JA treatment. These results express that JA and/or Aphid application induces systemic defenses in oilseed rape that have a negative effect on P. xylostella fitness. These findings develop our knowledge the effects of induced defenses on P. xylostella.
Biology and physiological traits of Sitotroga cerealella Olivier, a world-wide insect pest of cereals, were investigated on different grains (barley, maize, rye, sorghum, triticale, and wheat). Larval and pupal duration was the shortest on wheat and triticale, and the longest on sorghum. There were significant differences in survival rate of immature stages on grains with different seed hardness. The highest realized fecundity and egg fertility was observed on triticale and the lowest was seen on sorghum. Larvae fed on triticale and wheat showed higher amount of α-amylase activity than larvae fed on other grains. Maximum Vmax/KM ratio was determined for the midgut α-amylase of S. cerealella larvae fed on wheat. Whole-body protein, lipid, and glycogen contents of pupae reared on sorghum and rye were significantly lower than those reared on other grains. The statistical analysis showed that the clear correlation could be drawn between the biological characteristics and energy contents of S. cerealella on one side and seed hardness, amylolytic activity, and food consumed on the other. According to the findings of this study, the variable responses of S. cerealella to feeding on different host grains could be attributed to the quality of diets tested.
The Indianmeal moth, Plodia interpunctella Hübner (Lepidoptera: Pyralidae), is a major stored product pest that is found throughout the world. In this study, the effect of oral exposure to Bacillus thuringiensis (Berliner) subsp. kurstaki (Bacillales: Bacillaceae) and azadirachtin was evaluated in third instar P. interpunctella under laboratory conditions. The median lethal concentration (LC50) of Bt and azadirachtin on third instars was 490 and 241 μg a.i./ml, respectively. The median lethal time (LT50) of these insecticides was the same (4.5 d following exposure to 750 or 400 μg a.i./ml of Bt or azadirachtin, respectively). When the larvae fed on diet containing LC30 concentrations of both Bt and azadirachtin an additive interaction in terms of mortality was found. A synergistic interaction was found when the larvae fed on diet containing LC50 concentrations of both insecticides. Larvae that fed on insecticide-containing diet (either Bt or azadirachtin at an LC30 concentration, or both insecticides at LC30 or LC50 concentrations) showed lower glycogen and lipid levels, and generally lower protein content in comparison to control larvae. Larvae that fed on diet containing both Bt and azadirachtin showed reduced weight gain and nutritional indices in comparison to control larvae or larvae fed on the diet containing only one of the insecticides. Finally, exposure to both insecticides, either individually or in combination, reduced the level of digestive enzymes found in the midgut. Our findings indicate that both Bt and azadirachtin, either individually or in combination have significant potential for use in controlling of P. interpunctella.
Tuta absoluta (Meyrick) is a serious pest of tomato throughout the world. The life history and the life table parameters of T. absoluta were studied on 12 different commercial tomato cultivars. The longest larval developmental period (12.92 ± 0.11 days), the longest total developmental time (26.20 ± 0.22 days), the longest total pre-oviposition period (29.31 ± 0.63 days) and the shortest oviposition period (5.08 ± 0.43 days) were recorded on Korral cultivar. The highest pupal mortality was found on Korral (23.53%) and the lowest larval and pupal growth indices were observed on Korral (6.57and 8.87, respectively). The highest and the lowest overall mortalities were observed on Korral (35.00%) and on Valouro (21.67%), respectively. The lowest and the highest intrinsic rate of increase (r m) were found on Korral (0.1046 ± 0.0005 day-1) and on Valouro (0.1584 ± 0.0002 day-1) cultivars. Also the lowest finite rate of increase (λ) (1.1102 day-1) and the highest doubling time (6.63 days) of the tomato leafminer were observed on Korral cultivar. Therefore, it was concluded that among the 12 tomato cultivars that were studied in this research, Korral was relatively unsuitable to T. absoluta and can be used in the integrated control programs (IPM) of this pest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.