Two component systems (TCS) are signalling pathways that allow bacterial cells to sense, respond and adapt to fluctuating environments. Among the classical TCS of Escherichia coli, YedVW has been recently showed to be involved in the regulation of msrPQ, encoding for the periplasmic methionine sulfoxide reductase system. In this study, we demonstrate that hypochlorous acid (HOCl) induces the expression of msrPQ in a YedVW dependant manner, whereas H2O2, NO and paraquat (a superoxide generator) do not. Therefore, YedV appears to be an HOCl-sensing histidine kinase. Based on this finding, we proposed to rename this system HypVW. Moreover, using a directed mutagenesis approach, we show that Met residues located in the periplasmic loop of HypV (formerly YedV) are important for its activity. Given that HOCl oxidizes preferentially Met residues, we bring evidences that HypV could be activated via the reversible oxidation of its methionine residues, thus conferring to MsrPQ a role in switching HypVW off. Based on these results, we propose that the activation of HypV by HOCl could occur through a Met redox switch. HypVW appears to be the first characterized TCS able to detect HOCl in E. coli. This study represents an important step in understanding the mechanisms of reactive chlorine species resistance in prokaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.