Magnetization and high-resolution x-ray diffraction measurements of the Kitaev-Heisenberg material α-RuCl 3 reveal a pressure-induced crystallographic and magnetic phase transition at a hydrostatic pressure of p ∼ 0.2 GPa. This structural transition into a triclinic phase is characterized by a very strong dimerization of the Ru-Ru bonds, accompanied by a collapse of the magnetic susceptibility. Ab initio quantum-chemistry calculations disclose a pressure-induced enhancement of the direct 4d-4d bonding on particular Ru-Ru links, causing a sharp increase of the antiferromagnetic exchange interactions. These combined experimental and computational data show that the Kitaev spin-liquid phase in α-RuCl 3 strongly competes with the crystallization of spin singlets into a valence bond solid. DOI: 10.1103/PhysRevB.97.241108 The Kitaev model on a honeycomb lattice has grown into a hot topic in the last decade due to its exact solubility and its quantum spin-liquid ground state, which would be relevant for, e.g., quantum computing [1,2]. It implies a bonddependent compass-type coupling K and strong intrinsic spin frustration [3]. A crucial ingredient for realizing the Kitaev model in real materials is a strong spin-orbit coupling together with a honeycomb structure. Recently, Kitaev interactions were identified in α-RuCl 3 , from its unusual magnetic excitation spectrum [4,5], its strong magnetic anisotropy [6], and electronic-structure calculations [7,8], which render this material an ideal platform for exploring Kitaev magnetism experimentally.α-RuCl 3 is a j eff = 1/2 Mott insulator with a twodimensional (2D) layered structure of edge-sharing RuCl 6 octahedra forming a honeycomb lattice. At ambient pressure, * g.bastien@ifw-dresden.de Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.the honeycomb layers are arranged in a monoclinic (C2/m) structure at room temperature with one of the three nearestneighbor (NN) Ru-Ru bonds slightly shorter than the other two [9]. A structural phase transition was reported at T S 60 K under cooling and T S 166 K upon warming, but the low-temperature crystal structure is still under debate and could be either rhombohedral (R3) [10,11] or monoclinic (C2/m) [12,13]. The onset of long-range magnetic order at T N 7 K [9] in α-RuCl 3 implies that other magnetic interactions have to be considered in addition to the Kitaev interaction K: a NN Heisenberg J , an off-diagonal coupling , as well as next-NN interactions J 2 and J 3 [7,8,14,15]. While electronic-structure calculations indicate that K is ferromagnetic in α-RuCl 3 and indeed defines the largest exchange energy scale [7,8,14,15], the debate on the minimal effective spin model and precise magnitude of the different couplings is not fully settled yet. By applying a magnetic field in the basal plane, the magnetic zigzag ground sta...
Superconductivity is a unique manifestation of quantum mechanics on a macroscopic scale, and one of the rare examples of many-body phenomena that can be explained by predictive, quantitative theories. The superconducting ground state is described as a condensate of Cooper pairs, and a major challenge has been to understand which mechanisms could lead to a bound state between two electrons, despite the large Coulomb repulsion. An even bigger challenge is to identify experimentally this pairing mechanism, notably in unconventional superconductors dominated by strong electronic correlations, like in high-Tc cuprates, iron pnictides or heavy-fermion compounds. Here we show that in the ferromagnetic superconductor UCoGe, the field dependence of the pairing strength influences dramatically its macroscopic properties like the superconducting upper critical field, in a way that can be quantitatively understood. This provides a simple demonstration of the dominant role of ferromagnetic spin fluctuations in the pairing mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.