A series of new piano-stool iron(II) complexes comprising mono-and bidentate chelating N-heterocyclic carbene ligands [Fe(cp)(CO)(NHC)(L)]X have been prepared and analyzed by spectroscopic, electrochemical, crystallographic, and theoretical methods. Selectively substituting the L site with a series of ligands going from carbene to pyridine to CO suggests that CO is the strongest π acceptor, while the behavior of pyridine and carbene is nearly identical. This suggests that in these complexes comprising an electronrich iron(cp)(carbene) fragment, N-heterocyclic carbenes are not pure σ donors but also moderate π acceptors. Theoretical calculations support this bonding model and indicate charge saturation at the metal as key for π back-bonding to N-heterocyclic carbenes. On the basis of voltammetric measurements, the Lever electrochemical parameter of these carbenes has been determined: E L ) +0.29. Systematic substitution of the wingtip groups of the carbene revealed only subtle changes in the electronic properties of the iron center, thus providing a suitable methodology for ligand-induced fine-tuning of the coordinated metal.
The cationic chloro complexes [(arene)Ru(H2N∩NH2)Cl]+ (1: arene = C6H6; 2: arene = p‐MeC6H4iPr; 3: arene = C6Me6) have been synthesised from the corresponding arene ruthenium dichloride dimers and enantiopure (R,R or S,S) trans‐1,2‐diaminocyclohexane (H2N∩NH2) and isolated as the chloride salts. The compounds are all water‐soluble and, in the case of the hexamethylbenzene derivative 3, the aqua complex formed upon hydrolysis [(C6Me6)Ru(H2N∩NH2)OH2]2+ (4) could be isolated as the tetrafluoroborate salt. The molecular structures of 3 and 4 have been determined by single‐crystal X‐ray diffraction analyses of [(C6Me6)Ru(H2N∩NH2)Cl]Cl and [(C6Me6)Ru(H2N∩NH2)OH2][BF4]2. Treatment of [Ru2(arene)2Cl4] with the monotosylated trans‐1,2‐diaminocyclohexane derivative (TsHN∩NH2) does not yield the expected cationic complexes, analogous to 1–3 but the neutral deprotonated complexes [(arene)Ru(TsN∩NH2)Cl] (5: arene = C6H6; 6: arene = p‐MeC6H4iPr; 7: arene = C6Me6; 8: arene = C6H5COOMe). Hydrolysis of the chloro complex 7 in aqueous solution gave, upon precipitation of silver chloride, the corresponding monocationic aqua complex [(C6Me6)Ru(TsHN∩NH2)(OH2)]+ (9) which was isolated and characterised as its tetrafluoroborate salt. The enantiopure complexes 1–9 have been employed as catalysts for the transfer hydrogenation of acetophenone in aqueous solution using sodium formate and water as a hydrogen source. The best results were obtained (60 °C) with 7, giving a catalytic turnover frequency of 43 h–1 and an enantiomeric excess of 93 %. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.