Estrogen receptors (ERs) α and β are distributed in most tissues of women and men. ERs are bound by estradiol (E2), a natural hormone, and mediate the pleiotropic and tissue-specific effects of E2, such as proliferation of breast epithelial cells or protection and differentiation of neuronal cells. Numerous environmental molecules, called endocrine disrupting compounds, also interact with ERs. Phytoestrogens belong to this large family and are considered potent therapeutic molecules that act through their selective estrogen receptor modulator (SERM) activity. Using breast cancer cell lines as a model of estrogen-dependent proliferation and a stably ER-expressing PC12 cell line as a model of neuronal differentiating cells, we studied the SERM activity of major dietary compounds, such as apigenin, liquiritigenin, daidzein, genistein, coumestrol, resveratrol and zearalenone. The ability of these compounds to induce ER-transactivation and breast cancer cell proliferation and enhance Nerve Growth Factor (NGF) -induced neuritogenesis was assessed. Surprisingly, although all compounds were able to activate the ER through an estrogen responsive element reporter gene, they showed differential activity toward proliferation or differentiation. Apigenin and resveratrol showed a partial or no proliferative effect on breast cancer cells but fully contributed to the neuritogenesis effect of NGF. However, daidzein and zearalenone showed full effects on cellular proliferation but did not induce cellular differentiation. In summary, our results suggest that the therapeutic potential of phytoestrogens can diverge depending on the molecule and the phenotype considered. Hence, apigenin and resveratrol might be used in the development of therapeutics for breast cancer and brain diseases.
Estrogens and progestins are widely used in combination in human medicine and both are present in aquatic environment. Despite the joint exposure of aquatic wildlife to estrogens and progestins, very little information is available on their combined effects. In the present study we investigated the effect of ethinylestradiol (EE2) and Levonorgestrel (LNG), alone and in mixtures, on the expression of the brain specific ER-regulated cyp19a1b gene. For that purpose, recently established zebrafish-derived tools were used: (i) an in vitro transient reporter gene assay in a human glial cell line (U251-MG) co-tranfected with zebrafish estrogen receptors (zfERs) and the luciferase gene under the control of the zebrafish cyp19a1b gene promoter and (ii) an in vivo bioassay using a transgenic zebrafish expressing GFP under the control of the zebrafish cyp19a1b gene promoter (cyp19a1b-GFP). Concentrationresponse relationships for single chemicals were modeled and used to design the mixture experiments following a ray design. The results from mixture experiments were analyzed to predict joint effects according to concentration addition and statistical approaches were used to characterize the potential interactions between the components of the mixtures (synergism/antagonism). We confirmed that some progestins could elicit estrogenic effects in fish brain. In mixtures, EE2 and LNG exerted additive estrogenic effects both in vitro and in vivo, suggesting that some environmental progestin could exert effects that will add to those of environmental (xeno-)estrogens. Moreover, our zebrafish specific assays are valuable tools that could be used in risk assessment for both single chemicals and their mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.