Surveillance of acute flaccid paralysis often identifies enteroviruses not typeable by virus neutralization in cell culture. During 2000 and 2001, 186 isolates from 138 children with acute flaccid paralysis in the Democratic Republic of the Congo were sent for typing to the National Reference Centre for Enteroviruses in Lyon, France. The 5' UTR of the viral genome could be amplified by PCR for 158 isolates from 114 patients. Isolates from 89 patients were neutralizable, and contained non-polio enterovirus types. Seventeen children were infected with more than one entero- or adenovirus; another three were co-infected with both these viruses. Serological typing failed with 19 isolates from 13 (9%) patients. The VP1 region of these strains could be amplified by PCR and sequenced, which revealed that five children were infected with CV-A17, EV-70, EV-76, EV-77, or CV-A13. Two patients were doubly infected, one with CV-A24 and E-9, and another with E-27 and EV-81. Isolates from six children contained strains with divergent VP1 region. The amino acid sequences of these complete VP1 regions diverged >or=28% from published types indicating that they represented two new enterovirus types, tentatively designated EV-93 belonging to HEV-B and EV-94 within HEV-D. The latter enterovirus has in parallel been isolated from sewage in Egypt. In conclusion, there was a high frequency of "untypable" enterovirus isolates from cases with acute flaccid paralysis in the Democratic Republic of the Congo. Six of these were shown to represent two enteroviruses not previously described.
BackgroundInfluenza viruses can modulate and hijack several cellular signalling pathways to efficiently support their replication. We recently investigated and compared the cellular gene expression profiles of human lung A549 cells infected by five different subtypes of human and avian influenza viruses (Josset et al. Plos One 2010). Using these transcriptomic data, we have focused our analysis on the modulation of the p53 pathway in response to influenza infection.ResultsOur results were supported by both RT-qPCR and western blot analyses and reveal multiple alterations of the p53 pathway during infection. A down-regulation of mRNA expression was observed for the main regulators of p53 protein stability during infection by the complete set of viruses tested, and a significant decrease in p53 mRNA expression was also observed in H5N1 infected cells. In addition, several p53 target genes were also down-regulated by these influenza viruses and the expression of their product reduced.ConclusionsOur data reveal that influenza viruses cause an overall down-regulation of the host p53 pathway and highlight this pathway and p53 protein itself as important viral targets in the altering of apoptotic processes and in cell-cycle regulation.
b; and p53 Laboratory (p53Lab), Singapore, Singapore c Previous studies have described the role of p53 isoforms, including p53 and ⌬133p53␣, in the modulation of the activity of fulllength p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infection by using silencing and transient expression strategies in human lung epithelial cells. In addition, with the help of a panel of different influenza viruses from different subtypes, we also show that infection differentially regulates the expressions of p53 and ⌬133p53␣. Altogether, our results highlight the role of p53 isoforms in the viral cycle of influenza A viruses, with p53 and ⌬133p53␣ acting as regulators of viral production in a p53-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.