National and European legislation over the past 20 yr, and the modernisation or removal of industrial sources, have significantly reduced European ozone precursor emissions. This study quantifies observed and modelled European ozone annual and seasonal linear trends from 158 harmonised rural background monitoring stations over a constant time period of a decade (1996–2005). Mean ozone concentrations are investigated, in addition to the ozone 5th percentiles as a measure of the baseline or background conditions, and the 95th percentiles that are representative of the peak concentration levels. This study aims to characterise and quantify surface European ozone concentrations and trends and assess the impact of the changing anthropogenic emission tracers on the observed and modelled trends. <br><br> Significant (<i>p</i><0.1) positive annual trends in ozone mean, 5th and 95th percentiles are observed at 54 %, 52 % and 45 % of sites respectively (85 sites, 82 sites and 71 sites). Spatially, sites in central and north-western Europe tend to display positive annual ozone trends in mean, 5th and 95th percentiles. Significant negative annual trends in ozone mean 5th and 95th percentiles are observed at 11 %, 12 % and 12 % of sites respectively (18 sites, 19 sites and 19 sites) which tend to be located in the eastern and south-western extremities of Europe. European-averaged annual trends have been calculated from the 158 sites in this study. Overall there is a net positive annual trend in observed ozone mean (0.16±0.02 ppbv yr<sup>−1</sup> (2σ error)), 5th (0.13±0.02 ppbv yr<sup>−1</sup>) and 95th (0.16±0.03 ppbv yr<sup>−1</sup>) percentiles, representative of positive trends in mean, baseline and peak ozone. Assessing the sensitivity of the derived overall trends to the constituent years shows that the European heatwave year of 2003 has significant positive influence and 1998 the converse effect; demonstrating the masking effect of inter-annual variability on decadal based ozone trends. <br><br> The European scale 3-D CTM CHIMERE was used to simulate hourly O<sub>3</sub> concentrations for the period 1996–2005. Comparisons between the 158 observed ozone trends to those equivalent sites extracted from regional simulations by CHIMERE better match the observed increasing annual ozone (predominantly in central and north-western Europe) for 5th percentiles, than for mean or 95th ozone percentiles. The European-averaged annual ozone trend in CHIMERE 5th percentiles (0.13±0.01 ppbv yr<sup>−1</sup>) matches the corresponding observed trend extremely well, but displays a negative trend for the 95th percentile (−0.03±0.02 ppbv yr<sup>−1</sup>) where a positive ozone trend is observed. Inspection of the EU-averaged monthly means of ozone shows that the CHIMERE model is overestimating the summer month O<sub>3</sub> levels. <br><br> In compariso...
International audienceWe show carbon monoxide (CO) distributions at different vertical levels over the subtropical southern Indian Ocean, analyzing an observation campaign using Fourier transform infrared (FTIR) solar absorption spectrometry performed in 2007 at Reunion Island (21°S, 55°E). The CO pollution levels detected by the FTIR measurements during the campaign show a doubling of the CO total columns during the Southern Hemisphere biomass burning season. Using correlative data from the Measurement of Pollution in the Troposphere instrument and back trajectories analyses, we show that the potential primary sources for CO throughout the troposphere in 2007 are southern Africa (June-August) and South America (September-October). A secondary potential contribution from Southeast Asia and Indonesia-Malaysia was identified in the upper troposphere, especially in July and September. We examine the relation between the Asian monsoon anticyclone seasonal cycle and this result. We also investigate the relative contribution of different areas across the globe to the CO concentration in the subtropical southern Indian Ocean in 2007 using backward simulations combining the Lagrangian model FLEXPART 6.2, the Global Fire Emissions Database (GFEDv2.1) and the Emission Database for Global Atmospheric Research (EDGARv3.2-FT2000). We confirm the predominance of the African and South American contributions in the CO concentration in the southern subtropical Indian Ocean below 11 km. We show that CO transported from Australia makes only a small contribution to the total CO concentration observed over Reunion Island, and that the long-range transport of CO coming from Southeast Asia and Indonesia-Malaysia is important, especially from June until September in the upper troposphere
To quantify changes in air pollution over Europe at the 2050 horizon, we designed a comprehensive modelling system that captures the external factors considered to be most relevant, and that relies on up-to-date and consistent sets of air pollution and climate policy scenarios. Global and regional climate as well as global chemistry simulations are based on the recent representative concentration pathways (RCP) produced for the Fifth Assessment Report (AR5) of the IPCC (Intergovernmental Panel on Climate Change) whereas regional air quality modelling is based on the updated emissions scenarios produced in the framework of the Global Energy Assessment. We explored two diverse scenarios: a reference scenario where climate policies are absent and a mitigation scenario which limits global temperature rise to within 2 °C by the end of this century.
This first assessment of projected air quality and climate at the regional scale based on CMIP5 (5th Coupled Model Intercomparison Project) climate simulations is in line with the existing literature using CMIP3. The discrepancy between air quality simulations obtained with a climate model or with meteorological reanalyses is pointed out. Sensitivity simulations show that the main factor driving future air quality projections is air pollutant emissions, rather than climate change or intercontinental transport of pollution. Whereas the well documented "climate penalty" that weights upon ozone (increase of ozone pollution with global warming) over Europe is confirmed, other features appear less robust compared to the literature, such as the impact of climate on PM2.5. The quantitative disentangling of external factors shows that, while several published studies focused on the climate penalty bearing upon ozone, the contribution of the global ozone burden is somewhat overlooked in the literature
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.