Women are increasingly present in the field of engineering, and despite a significant female presence, it has been found that the programmes continue to make no reference to women scientists. In chemical engineering, for example, all the names of scientists mentioned in the programmes belong to men only. To test this hypothesis of the overrepresentation of men in the programmes, a series of random opinion surveys were launched among 600 students from 5 universities to find out whether they had noticed this over-representation and what they thought about it. The results showed that the vast majority did not realize that the scientists presented as examples in classes were all men. In fact, 90% of the student panel were unable to identify a woman in the chemical engineering field, and the remaining 10% could cite only one or two -who were among the most recent and had received most attention from the media. The issue of inequalities between girls and boys and between women and men in education remains central to understanding and combating gender inequalities and to enabling people to develop as persons free from the limitations imposed on them by gender stereotypes. However, these inequalities cannot be explained exclusively by the issue of access to education but must also take the type and content of education into account. This article is a call for reflection on the content of university curricula and has a twofold objective: on the one hand, to raise awareness of this imbalance in representation among students, both male and female, and, on the other hand, to launch reflection on this "invisibility of women" and to propose some avenues for debate.
The influence of viscosity and surface tension on oxygen transfer was investigated using planar laser-induced fluorescence with inhibition (PLIF-I). The surface tension and the viscosity were modified using Triton X-100 and polyacrylamide, respectively. Changes in the hydrodynamic parameters of millimetric bubbles were identified, and transfer parameters were calculated. The results revealed a decrease in the mass transferred in the presence of a contaminant. For modified viscosity, the decrease in mass transferred was allowed for by current correlations, but the presence of surfactant led to a sharp decrease in the liquid side mass transfer coefficient, which became even lower when polymer was added. An explanation for the gap between classical correlations and experimental values of kL is discussed, and a hypothesis of the existence of an accumulation of contaminant in the diffusion layer is proposed. This led to the possibility of a decrease in the diffusion coefficient and oxygen saturation concentration in the liquid film, explaining the discrepancy between models and experience. Adapted values of DO2 and [O2] * in this layer were estimated. This original study unravels the complexity of mass transfer from an air bubble in a complex medium.
Highlights-H2S removal using cellular concrete waste was investigated-Cellular concrete is efficient for removing H2S in abiotic conditions-H2S reacts with CaCO3 in wet conditions to form gypsum-At EBRT = 56 s, a maximum elimination capacity of 7.8 g m-3 h-1 was calculated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.