Two retinal implants have recently received the CE mark and one has obtained FDA approval for the restoration of useful vision in blind patients. Since the spatial resolution of current vision prostheses is not sufficient for most patients to detect faces or perform activities of daily living, more electrodes with less crosstalk are needed to transfer complex images to the retina. In this study, we modelled planar and three-dimensional (3D) implants with a distant ground or a ground grid, to demonstrate greater spatial resolution with 3D structures. Using such flexible 3D implant prototypes, we showed that the degenerated retina could mould itself to the inside of the wells, thereby isolating bipolar neurons for specific, independent stimulation. To investigate the in vivo biocompatibility of diamond as an electrode or an isolating material, we developed a procedure for depositing diamond onto flexible 3D retinal implants. Taking polyimide 3D implants as a reference, we compared the number of neurones integrating the 3D diamond structures and their ratio to the numbers of all cells, including glial cells. Bipolar neurones were increased whereas there was no increase even a decrease in the total cell number. SEM examinations of implants confirmed the stability of the diamond after its implantation in vivo. This study further demonstrates the potential of 3D designs for increasing the resolution of retinal implants and validates the safety of diamond materials for retinal implants and neuroprostheses in general.
Odorant binding proteins (OBPs) are small soluble proteins found in olfactory systems that are capable of binding several types of odorant molecules. Cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs on polycrystalline diamond surfaces for biosensor development. The first approach resulted in random orientation of the immobilized proteins over the surface. The second approach based on complexing a histidine-tag located on the protein with nickel allowed control of the proteins' orientation. Evidence confirming protein grafting was obtained using electrochemical impedance spectroscopy, fluorescence imaging and X-ray photoelectron spectroscopy. The chemical sensing performances of these OBP modified transducers were assessed. The second grafting method led to typically 20% more sensitive sensors, as a result of better access of ligands to the proteins active sites and also perhaps a better yield of protein immobilization. This new grafting method appears to be highly promising for further investigation of the ligand binding properties of OBPs in general and for the development of arrays of non-specific biosensors for artificial olfaction applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.