Although most deoxyribonucleic acid (DNA) lesions are accurately repaired before replication, replication across unrepaired lesions is the main source of point mutations. The lesion tolerance processes, which allow damaged DNA to be replicated, entail two branches, error-prone translesion synthesis (TLS) and error-free damage avoidance (DA). While TLS pathways are reasonably well established, DA pathways are poorly understood. The fate of a replication-blocking lesion is generally explored by means of plasmid-based assays. Although such assays represent efficient tools to analyse TLS, we show here that plasmid-borne lesions are inappropriate models to study DA pathways due to extensive replication fork uncoupling. This observation prompted us to develop a method to graft, site-specifically, a single lesion in the genome of a living cell. With this novel assay, we show that in
Escherichia coli
DA events massively outweigh TLS events and that in contrast to plasmid, chromosome-borne lesions partially require RecA for tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.