Early bacterial colonization and succession within the gastrointestinal tract has been suggested to be crucial in the establishment of specific microbiota composition and the shaping of host phenotype. Here, the composition and dynamics of faecal microbiomes were studied for 31 healthy piglets across five age strata (days 14, 36, 48, 60 and 70 after birth) together with their mothers. Faecal microbiome composition was assessed by 16S rRNA gene 454-pyrosequencing. Bacteroidetes and Firmicutes were the predominant phyla present at each age. For all piglets, luminal secretory IgA concentration was measured at day 70, and body weight was recorded until day 70. The microbiota of suckling piglets was mainly represented by Bacteroides, Oscillibacter, Escherichia/Shigella, Lactobacillus and unclassified Ruminococcaceae genera. This pattern contrasted with that of Acetivibrio, Dialister, Oribacterium, Succinivibrio and Prevotella genera, which appeared increased after weaning. Lactobacillus fermentum might be vertically transferred via breast milk or faeces. The microbiota composition coevolved with their hosts towards two different clusters after weaning, primarily distinguished by unclassified Ruminococcaceae and Prevotella abundances. Prevotella was positively correlated with luminal secretory IgA concentrations, and body weight. Our study opens up new possibilities for health and feed efficiency manipulation via genetic selection and nutrition in the agricultural domain.
The ecological interactions within the gut microbial communities are complex and far from being fully understood. Here we report the first study that aims at defining the interaction network of the gut microbiota in pigs and comparing it with the enterotype-like clustering analysis. Fecal microbiota of 518 healthy piglets was characterized by 16S ribosomal RNA gene sequencing. Two networks were constructed at the genus and operational taxonomic unit levels. Within-network interactions mirrored the human gut microbiota relationships, with a strong co-exclusion between Prevotella and Ruminococcus genera, and were consistent with the two enterotype-like clusters identified in the pig microbiota. Remarkably, the cluster classification of the individuals was significantly associated with the body weight at 60 days of age (P=0.005) and average daily gain (P=0.027). To the best of our knowledge, this is the first study to provide an integrated overview of the porcine gut microbiota that suggests a conservation of the ecological community interactions and functional architecture between humans and pig. Moreover, we show that the microbial ecosystems and porcine growth traits are linked, which allows us to foresee that the enterotype concept may have an important role in the animal production industry.
Summary
We focused on a developmentally regulated growth acceleration in the dark‐grown Arabidopsis hypocotyl to study the role of changes in cell wall metabolism in the control of cell elongation.
To this end, precise transcriptome analysis on dissected dark‐grown hypocotyls, Fourier transform infrared (FT‐IR) microspectroscopy and kinematic analysis were used.
Using a cellulose synthesis inhibitor, we showed that the growth acceleration marks a developmental transition during which growth becomes uncoupled from cellulose synthesis. We next investigated the cellular changes that take place during this transition. FT‐IR microspectroscopy revealed significant changes in cell wall composition during, but not after, the growth acceleration. Transcriptome analysis suggested a role for cell wall remodeling, in particular pectin modification, in this growth acceleration. This was confirmed by the overexpression of a pectin methylesterase inhibitor, which caused a delay in the growth acceleration.
This study shows that the acceleration of cell elongation marks a developmental transition in dark‐grown hypocotyl cells and supports a role for pectin de‐methylesterification in the timing of this event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.