River restoration works often include measures to promote morphological diversity and enhance habitat suitability. One of these measures is the creation of macro-roughness elements, such as lateral cavities and embayments, in the banks of channelized rivers. However, in flows that are heavily charged with fine sediments in suspension, such as glacier-fed streams and very low-gradient reaches of large catchment rivers, these lateral cavities may trap these sediments. Consequently, the morphological changes may be affected, and the functionality of the restoration interventions may be compromised. Herein, we analyse the influence of these macro-roughness elements on the transport of fine sediments in the main channel. Laboratory tests with uniform flow charged with sediments in a channel with banks equipped with large-scale rectangular roughness elements were carried out. The laboratory experiments covered a wide range of rectangular cavity geometrical configurations and shallowness ratios. The influence of key parameters such as flow shallowness, geometric ratios of the cavities and initial sediment concentration was tested. Surface particle image velocimetry, sediment samples and temporal turbidity records were collected during the experiments. The amount of sediments captured by the cavities, the temporal evolution of the concentration of sediments in suspension and the flow hydrodynamics are cross-analysed and discussed. It is shown that the trapping efficiency of the macro-roughness elements is a clear function of the channel geometry and the shallowness of the flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.