Mutual impedance experiments have been developed to constrain the plasma bulk properties, such as density and temperature, of ionospheric and later space plasmas, through the electric coupling between an emitter and a receiver electric antennas. So far, the analytical modeling of such instruments has enabled to treat ionospheric plasmas, where charged particles are usually well characterized by Maxwellian electron distributions. With the growth of planetary exploration, mutual impedance experiments are or will be used to constrain space plasma bulk properties. Space plasmas are usually out of local thermodynamic equilibrium; therefore, new methods to calibrate and analyze mutual impedance experiments are now required in such non‐Maxwellian plasmas. To this purpose, this work aims at modeling the electric potential generated in a two‐electron temperature plasma by a pulsating point charge. A numerical method is developed for the computation of the electrostatic potential in a sum of Maxwellian plasmas. After validating the method, the results are used to build synthetic mutual impedance spectra and quantify the effect of a warm electron population on mutual impedance experiments, in order to illustrate how the method could be applied for recent and future planetary space missions, such as Rosetta, BepiColombo, and JUICE. In particular, we show how it enables to separate the densities and temperatures of two different electron populations using in situ measurements from the RPC‐MIP mutual impedance experiment on board Rosetta.
This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56 MHz frequency, 0.1-1 mbar pressures and 2-30 W coupled powers. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an actinometer). Simulations use a hybrid code that couples a two-dimensional time-dependent fluid module, describing the dynamics of the charged particles (electrons and positive ions N + 2 and N + 4 ), and a zero-dimensional kinetic module, describing the production and destruction of nitrogen (atomic and molecular) neutral species. The coupling between these modules adopts the local mean energy approximation to define space-time-dependent electron parameters for the fluid module and to work out space-time-averaged rates for the kinetic module. The model gives general good predictions for the self-bias voltage and for the intensities of radiative transitions (both average and spatially resolved), underestimating the electron density by a factor of 3-4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.