Background Evidence from a canine experimental acute myocardial infarction (MI) model shows that until the seventh week after MI the relationship between stellate ganglionic nerve and vagal nerve activities (SGNA/VNA) progressively increases. Objective We evaluated how autonomic nervous system activity influences temporal myocardial repolarization dispersion at this period. Methods We analyzed autonomic nerve activity as well as QT and RR variability from recordings previously obtained in 9 dogs. From a total 48 short-term electrocardiographic segments, 24 recorded before and 24 seven weeks after experimentally-induced MI, we obtained three indices of temporal myocardial repolarization dispersion: QTe (from q wave T to wave end), QTp (from q wave to T wave peak) and Te (from T wave peak to T wave end) variability index (QTeVI, QTpVI, TeVI). We also performed a heart rate variability power spectral analysis on the same segments. Results After MI, all the QT variables increased QTeVI (median [interquartile range]) (from - 1.76[0.82] to −1.32[0.68]), QTeVI (from −1.90[1.01] to −1.45[0.78]) and TeVI (from −0.72[0.67] to −0.22[1.00]), whereas all RR spectral indexes decreased (p<0.001 for all). Distinct circadian rhythms in QTeVI (p<0.05,) QTpVI (p<0.001) and TeVI (p<0.05) appeared after MI with circadian variations resembling that of SGNA/VNA. The morning QTpVI and TeVI acrophases approached the SGNA/VNA acrophase. Conversely, the evening QTeVI acrophase coincided with another SGNA/VNA peak. After MI, regression analysis detected a positive relationship between SGNA/VNA and TeVI (R2: 0.077; β: 0.278; p< 0.001). Conclusion Temporal myocardial repolarization dispersion shows a circadian variation after MI reaching its peak at a time when sympathetic is highest and vagal activity lowest.
Background and purpose:QT and Tpeak-Tend (Te) intervals are associated with sudden cardiac death in patients with chronic heart failure (CHF). We studied age-dependent influence on short-term temporal dispersion of these two variables in patients with postischemic CHF.Method:We grouped 75 CHF and 53 healthy control subjects into three age subsets: ≤50 years, >50 years and ≤65 years, and >65 years. We then calculated the following indices: QT and Te variability index (QTVI and TeVI), the ratio between the short-term variability (STV) of QT or Te, and the STV of resting rate (RR) (QT/RR STV and Te/RR STV).Results:In all different age subgroups, patients with CHF showed a higher level of QTVI than age-matched control subjects (≤50 years: P < 0.0001; >50 years and ≤65 years: P < 0.05; >65 years: P < 0.05). Patients with CHF < 50 years old also had all repolarization variability indices higher than normal age-matched controls (TeVI, P < 0.05; QT/RR STV, P < 0.05; Te/RR STV, P < 0.05), whereas we did not find any difference between the two older classes of subjects. Both QTVI (r2: 0.178, P < 0.05) and TeVI (r2: 0.433, P < 0.001) were positively related to age in normal subjects, even if the first correlation was weaker than the second one.Conclusion:Our data showed that QTVI could be used in all ages to evaluate repolarization temporal liability, whereas the other indices are deeply influenced by age. Probably, the age-dependent increase in QTVI was more influenced by a reduction of RR variability reported in older normal subjects.
Background and aim Evidences suggest that androgen deficiency is associated with sudden cardiac death (SCD). Our purpose was to analyse some electrocardiographic (ECG) markers of repolarization phase in hypogonadal patients either at baseline or after testosterone replacement therapy (TRT). Patients and Methods Baseline and after 6 months of testosterone replacement therapy, 14 hypogonadal patients and 10 age-matched controls underwent a short-term ECG recordings at rest and immediately after a maximal exercise test. The following ECG parameters have been collected: QTe (the interval between the q wave the end of T wave), QTp (the interval between the q wave and the peak of T wave), and Te (the interval between the peak and the end of T wave). Results At baseline, in the hypogonadal patients, corrected QTe and QTp values were longer at rest than in the controls at rest ( p < 0.05), whereas, during the recovery phase, only the QTp remained significantly longer ( p < 0.05). After TRT, hypogonadal patients showed an improvement only in Te ( p < 0.05). Conversely, any difference between hypogonadal patients and control subjects was found with respect to the markers of temporal dispersion of repolarization phases, except for a worse QTp → Te coherence ( p = 0.001) obtained during the recovery phase. Conclusions In conclusion, at rest, hypogonadal patients suffer from a stable increase in the myocardial repolarization phase without an increase in its temporal dispersion and, hence, the SCD risk seems to be low.
The data showed a significant relationship between ANS and atrial ECG variables, independent of the cycle duration. In particular, the oscillations were vagal mediated at the baseline, while sympathetic mediated during CHF. Whereas P wave variability might have a clinical utility in CHF management, it needs to be addressed in specific studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.