A mechanically robust, transparent, and healable electrode was successfully developed by embedding Ag nanowires (AgNWs) on the surface of polydimethylsiloxane-based polyurethane (PDMS-CPU) cross-linked by Diels-Alder (DA) adducts. The reversibility of the DA reaction enabled the heated dimethylformamide (DMF) vapor to induce de-cross-linking of the PDMS-CPU preformed as a substrate. A combination of the retro-DA reaction and the plasticizer effect softened the polymer surface, embedding the coated AgNWs on the surface of the polymer. With this simple postprocessing, the surface roughness and mechanical stability of the electrode were largely enhanced. Even with a 55 μm bending radius, which corresponds to a strain of 90%, the resistance of the electrode after 10 min of vapor treatment increased by 2.1% for inward bending and 5.3% for outward bending. This result shows a great potential of the proposed method, as it can also be used to fabricate various mechanically deformable transparent electrode. Furthermore, swelling of the PDMS-CPU film owing to the DMF vapor facilitated the healing properties of the scratched electrodes.
This paper presents the successful fabrication of a transparent electrode comprising a sandwich structure of silicone/Ag nanowires (AgNWs)/silicone equipped with Diels–Alder (DA) adducts as crosslinkers to realise highly stable stretchability. Because of the reversible DA reaction, the crosslinked silicone successfully bonds with the silicone overcoat, which should completely seal the electrode. Thus, any surrounding liquid cannot leak through the interfaces among the constituents. Furthermore, the nanowires are protected by the silicone cover when they are stressed by mechanical loads such as bending, folding, and stretching. After delicate optimisation of the layered silicone/AgNW/silicone sandwich structure, a stretchable transparent electrode which can withstand 1000 cycles of 50% stretching–releasing with an exceptionally high stability and reversibility was fabricated. This structure can be used as a transparent strain sensor; it possesses a strong piezoresistivity with a gauge factor greater than 11.
BaTiO3 hollow nanofibers were fabricated by electrospinning and then subsequent calcination of as-spun nanofibers with a heating rate of 2.5 °C/min. Scanning electron microscope and transmission electron microscope (TEM) results indicated that the heating rate had a significant effect on the morphology of the BaTiO3 hollow nanofibers. The X-ray diffraction, Raman spectroscopy, and TEM results indicate the prepared BaTiO3 hollow nanofibers have tetragonal phases. From the results of the X-ray photoelectron spectroscopy analysis, in the amorphous BaTiO3 nanofiber, peaks at 457.2 eV for Ti 2p3/2 were also found, which corresponded to the Ti3+ ions. However, in the crystalline BaTiO3 nanofibers, peaks of Ti 2p3/2 showed the Ti4+ ions. Intense visible photoluminescence was observed in the amorphous BaTiO3 nanofiber, which is calcined below a temperature of 500 °C. The observed intense photoluminescence was ascribed to a multiphonon process with localized states within the band gap of the highly disordered states. In the crystalline BaTiO3 hollow fiber, low intensity of photoluminescence showed at the visible region, which is originated from an intrinsic Ba defect.
Chemical vapor deposition (CVD)-grown single-layer graphene samples, transferred onto a transmission electron microscope (TEM) grid and onto a quartz plate, were studied using polarized Raman spectroscopy with differing angles of laser incidence (θ). Two different polarization configurations are used. In an in-plane configuration, the polarization direction of both incident and scattered light is parallel to the graphene plane. In an out-of-plane configuration, the angle between the polarization vector and the graphene plane is the same as the angle of laser incidence (θ). The normalized Raman intensity of the G-band measured in the out-of-plane configuration, with respect to that in the in-plane configuration, was analyzed as a function of θ. The normalized Raman intensity showed approximately cos2θ-dependence up to θ = 70°, which can be explained by the fact that only the electric field component of the incident and the scattered photon in the out-of-plane configuration projected onto the graphene plane can contribute to the Raman scattering process because of the perfect confinement of the electrons to the graphene plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.