In this paper, we propose a method for generating undulatory gaits for snake robots. Instead of starting from a pre-defined movement pattern such as a serpenoid curve, we use a Model Predictive Control (MPC) approach to automatically generate effective locomotion gaits via trajectory optimization. An important advantage of this approach is that the resulting gaits are automatically adapted to the environment that is being modeled as part of the snake dynamics. To illustrate this, we use a novel model for anisotropic dry friction, along with existing models for viscous friction and fluid dynamic effects such as drag and added mass. For each of these models, gaits generated without any change in the method or its parameters are as efficient as Pareto-optimal serpenoid gaits tuned individually for each environment. Furthermore, the proposed method can also produce more complex or irregular gaits, e.g. for obstacle avoidance or executing sharp turns.
Finger-gaiting manipulation is an important skill to achieve large-angle in-hand re-orientation of objects. However, achieving these gaits with arbitrary orientations of the hand is challenging due to the unstable nature of the task. In this work, we use model-free reinforcement learning (RL) to learn finger-gaiting only via precision grasps and demonstrate finger-gaiting for rotation about an axis purely using on-board proprioceptive and tactile feedback. To tackle the inherent instability of precision grasping, we propose the use of initial state distributions that enable effective exploration of the state space. Our method can learn finger gaiting with significantly improved sample complexity than the state-of-the-art. The policies we obtain are robust and also transfer to novel objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.