Fabrication of dense KNN‐based lead‐free piezoelectric ceramics at low temperatures in short time through a cost‐effective way remains a challenge. Herein, this challenge could be addressed by using reactive flash sintering. It is demonstrated that the phase transformation of KNbO3‐NaNbO3 into (K,Na)NbO3 and densification occur simultaneously during the flash event. Most importantly, ZrO2 doping can greatly decrease the onset flash temperature, which is ascribed to the increased conductivity of sample. In addition, the current limit has a significant effect on the phase transformation and densification. The flash‐sintered KNN ceramics exhibit the good ferroelectric and piezoelectric properties. Furthermore, the ZrO2 doped and undoped KNN ceramics show a comparable coercive field Ec, which may be related to the residual point defects after the flash. Besides the Joule heating, the avalanche generation of point defects is suggested to be responsible for the ultrafast solid‐state reaction and densification rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.