Low-temperature atmospheric-pressure plasma was applied to degenerate amyloid-ß (Aß) fibrils, which are a major component of neuritic plaque associated with Alzheimer's disease (AD). We showed that an Aß fibril exposed to a low-frequency (LF) plasma jet in aqueous solution retained its morphology, molecular weight, and cytotoxicity, but, intriguingly, decreased in protease resistance and ß-sheet content. These results suggested that an LF plasma jet could be utilized for the treatment of AD to eliminate neuritic plaque by accelerating the proteolysis of Aß fibrils.
Single- and double-layer graphene nanoribbons (GNRs) with widths of around 10 nm were synthesized directly onto an insulating substrate by solid-phase graphitization using a gallium vapor catalyst and carbon templates made of amyloid fibrils. Subsequent investigation revealed that the crystallinity, conductivity, and carrier mobility were all improved by increasing the temperature of synthesis. The carrier mobility of the GNR synthesized at 1050 °C was 0.83 cm2/V s, which is lower than that of mechanically exfoliated graphene. This is considered to be most likely due to electron scattering by the defects and edges of the GNRs.
Amyloid fibrils, which are linear proteins with widths of less than 10 nm and lengths of more than 1 μm, were used as an amorphous carbon template for graphene nanoribbons (GNRs) synthesized by solid-phase graphitization using liquid Ga as the catalyst. The crystal quality of the GNRs improved with increasing synthesis temperature. However, the shape of the GNRs synthesized at temperatures higher than 900 °C became broader, losing the original amyloid shape, whereas the GNRs synthesized at 900 °C seemed to maintain the original amyloid shape in the SEM observation. The conducting paths of GNRs synthesized at 900 °C were found to be slightly diffused outside the topography of the GNRs in the conductive atomic force microscopy map. In addition, some of the sapphire terrace edges of the substrate showed conductivity, which indicates that the growth mechanism of graphene on a sapphire substrate might be a step-flow growth mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.