During their lifespan, dendritic cells (DCs) are exposed to different pO2 levels that affect their differentiation and functions. Autophagy is one of the adaptive responses to hypoxia with important implications for cell survival. While the autophagic machinery in DCs was shown to impact signaling of TLRs, its regulation by the MD-2/TLR4 ligand LPS is still unclear. The aim of this study was to evaluate whether LPS can induce autophagy in DCs exposed to either aerobic or hypoxic conditions. Using human monocyte-derived DCs and the combination of immunofluorescence confocal analysis, measure of mitochondrial membrane potential, Western blotting, and RT-qPCR, we showed that the ability of LPS to modulate autophagy was strictly dependent upon pO2 levels. Indeed, LPS inhibited autophagy in aerobic conditions whereas the autophagic process was induced in a hypoxic environment. Under hypoxia, LPS treatment caused a significant increase of functional lysosomes, LC3B and Atg protein upregulation, and reduction of SQSTM1/p62 protein levels. This selective regulation was accompanied by activation of signalling pathways and expression of cytokines typically associated with DC survival. Bafilomycin A1 and chloroquine, which are recognized as autophagic inhibitors, confirmed the induction of autophagy by LPS under hypoxia and its impact on DC survival. In conclusion, our results show that autophagy represents one of the mechanisms by which the activation of the MD-2/TLR4 ligand LPS promotes DC survival under hypoxic conditions.
Background: Intratumoral hypoxia contributes to cancer progression and poor prognosis. Carbonic anhydrases IX (CAIX) and XII (CAXII) play pivotal roles in tumor cell adaptation and survival, as aberrant Hedgehog (Hh) pathway does. In malignant melanoma both features have been investigated for years, but they have not been correlated before and/or identified as a potential pharmacological target. Here, for the first time, we demonstrated that malignant melanoma cell motility was impaired by targeting CAXII via either CAs inhibitors or through the inhibition of the Hh pathway. Methods: We tested cell motility in three melanoma cell lines (WM-35, SK-MEL28, and A375), with different invasiveness capabilities. To this end we performed a scratch assay in the presence of the smoothened (SMO) antagonist cyclopamine (cyclo) or CAs inhibitors under normoxia or hypoxia. Then, we analyzed the invasiveness potential in the cell lines which were more affected by cyclo and CAs inhibitors (SK-MEL28 and A375). Western blot was employed to assess the expression of the hypoxia inducible factor 1α, CAXII, and FAK phosphorylation. Immunofluorescence staining was performed to verify the blockade of CAXII expression. Results: Hh inhibition reduced melanoma cell migration and CAXII expression under both normoxic and hypoxic conditions. Interestingly, basal CAXII expression was higher in the two more aggressive melanoma cell lines. Finally, a direct CAXII blockade impaired melanoma cell migration and invasion under hypoxia. This was associated with a decrease of FAK phosphorylation and metalloprotease activities. Conclusions: CAXII may be used as a target for melanoma treatment not only through its direct inhibition, but also through Hh blockade.
A type lamins are fundamental components of the nuclear lamina. Changes in lamin A expression correlate with malignant transformation in several cancers. However, the role of lamin A has not been explored in osteosarcoma (OS). Here, we wanted to investigate the role of lamin A in normal osteoblasts (OBs) and OS cells. Thus, we studied the expression of lamin A/C in OS cells compared to OBs and evaluated the effects of lamin A overexpression in OS cell lines. We show that, while lamin A expression increases during osteoblast differentiation, all examined OS cell lines express lower lamin A levels relative to differentiated OBs. The condition of low LMNA expression confers to OS cells a significant increase in migration potential, while overexpression of lamin A reduces migration ability of OS cells. Moreover, overexpression of unprocessable prelamin A also reduces cell migration. In agreement with the latter finding, OS cells which accumulate the highest prelamin A levels upon inhibition of lamin A maturation by statins, had significantly reduced migration ability. Importantly, OS cells subjected to statin treatment underwent apoptotic cell death in a RAS-independent, lamin A-dependent manner. Our results show that pro-apoptotic effects of statins and statin inhibitory effect on OS cell migration are comparable to those obtained by prelamin A accumulation and further suggest that modulation of lamin A expression and post-translational processing can be a tool to decrease migration potential in OS cells.
Hypoxia is a key component of the tumor microenvironment (TME) and promotes not only tumor growth and metastasis, but also negatively affects infiltrating immune cells by impairing host immunity. Dendritic cells (DCs) are the most potent antigen-presenting cells and their biology is weakened in the TME in many ways, including the modulation of their viability. RNASET2 belongs to the T2 family of extracellular ribonucleases and, besides its nuclease activity, it exerts many additional functions. Indeed, RNASET2 is involved in several human pathologies, including cancer, and it is functionally relevant in the TME. RNASET2 functions are not restricted to cancer cells and its expression could be relevant also in other cell types which are important players in the TME, including DCs. Therefore, this study aimed to unravel the effect of hypoxia (2% O2) on the expression of RNASET2 in DCs. Here, we showed that hypoxia enhanced the expression and secretion of RNASET2 in human monocyte-derived DCs. This paralleled the HIF-1α accumulation and HIF-dependent and -independent signaling, which are associated with DCs’ survival/autophagy/apoptosis. RNASET2 expression, under hypoxia, was regulated by the PI3K/AKT pathway and was almost completely abolished by TLR4 ligand, LPS. Taken together, these results highlight how hypoxia- dependent and -independent pathways shape RNASET2 expression in DCs, with new perspectives on its implication for TME and, therefore, in anti-tumor immunity.
Hypoxia is a component of both physiological and pathological conditions, including inflammation, solid tumors, and lymphoid tissues, where O2 demand is not balanced by O2 supply. During their lifespan, dendritic cells (DCs) are exposed to different pO2 and activate different adaptive responses, including autophagy, to preserve their viability and functions. Autophagy plays multiple roles in DC physiology. Very recently, we demonstrated that hypoxia shapes autophagy in DCs upon their differentiation state. Here, we proposed a role for PI3Ks, and especially class III PI3K/Vps34, that could be relevant in hypoxia-induced autophagy, in either immature or mature DCs. Hypoxia inhibited mTOR phosphorylation and activated a pro-autophagic program. By using different pharmacological inhibitors, we demonstrated that hypoxia-induced autophagy was mediated by PI3Ks, especially by Vps34. Furthermore, Vps34 expression was enhanced by LPS, a TLR4 ligand, along with the promotion of autophagy under hypoxia. The Vps34 inhibitor, SAR405, abolished hypoxia-induced autophagy, inhibited pro-survival signaling and viability, and increased the expression of proinflammatory cytokines. Our results underlined the impact of autophagy in the maintenance of DC homeostasis at both cell survival and inflammatory response levels, therefore, contributing to a better understanding of the significance of autophagy in DC physiology and pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.